Cho điểm A cố định ở bên trong đường tròn (O;R) và A không trùng với O. BC là dây cung quay quanh A. Xác định vị trí của dây cung BC lúc dây BC ngắn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
b: Xét ΔAKM và ΔAMI có
góc AMK=góc AIM
góc MAK chung
=>ΔAKM đồng dạng với ΔAMI
=>AK/AM=AM/AI
=>AM^2=AI*AK
Xét ΔABM và ΔAMC có
góc AMB=góc ACM
góc BAM chung
=>ΔABM đồng dạng với ΔAMC
=>AB/AM=AM/AC
=>AM^2=AB*AC=AK*AI
a: góc SAO=góc SHO=90 độ
=>SAHO nội tiếp
b: Xét ΔSAB và ΔSCA có
góc SAB=góc SCA
góc ASB chung
=>ΔSAB đồng dạng với ΔSCA
=>SA^2=SB*SC
a: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
b: ΔOBC cân tại O có OI là trung tuyến
nên OI vuông góc BC
Xét (O) có
AM,AN là tiếp tuyến
=>AM=AN
mà OM=ON
nên OA là trung trực của MN
=>OA vuông góc MN tại H
Xét ΔAHK vuông tại H và ΔAIO vuông tại I có
góc HAK chung
=>ΔAHK đồng dạng vớiΔAIO
=>AH/AI=AK/AO
=>AH*AO=AK*AI=AB*AC
Gọi bán kính của đường tròn (O) là R
Ta có:MB=MA+AB = MA + 2R
Suy ra: MA =MB – 2R
Ta lại có: M T 2 = MA.MB (cmt)
Suy ra: M T 2 = (MB- 2R).MB = M B 2 – 2R.MB
TH1: M nằm trong đường tròn.
là hai góc nội tiếp cùng chắn cung
⇒ MA.MB = MC.MD
TH2: M nằm ngoài đường tròn.
ΔMBC và ΔMDA có:
Kiến thức áp dụng
+ Góc nội tiếp chắn một cung có số đo bằng một nửa số đo của cung đó.
+ Hai góc nội tiếp chắn cùng một cung thì có số đo bằng nhau.
TH1: M nằm trong đường tròn.
là hai góc nội tiếp cùng chắn cung
⇒ MA.MB = MC.MD
TH2: M nằm ngoài đường tròn.
ΔMBC và ΔMDA có: