Tổng của x,y thỏa mãn: \(\left(x-2015\right)^2+\left(y-2014\right)^4\ge0\)
Lm thế nào m.n ơi??! Giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tc dtsbn:
\(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-z}{-2}=\dfrac{y-z}{-1}=\dfrac{x-y}{-1}\\ \Leftrightarrow\dfrac{x-z}{2}=\dfrac{y-z}{1}=\dfrac{x-y}{1}\\ \Leftrightarrow x-z=2\left(y-z\right)=2\left(x-y\right)\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)
Đặt \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}=k\)
\(\Rightarrow\hept{\begin{cases}x=2013k\\y=2014k\\z=2015k\end{cases}}\)
Ta có :
4(x - y)(y - z) = 4(2013k - 2014k)(2014k - 2015k)
=4.(-k).(-k) = 4k2 (1)
(z - x)2 = (2015k - 2013k)2 = (2k)2 = 4k2 (2)
Từ 1 và 2
=> 4(x - y)(y - z) = (z - x)2
Lời giải:
Đặt $xy=t$
Áp dụng BĐT AM_GM:
$xy\leq \frac{(x+y)^2}{4}=3$. Như vậy $0\leq t\leq 3$
Ta có:
$P=(x^4+1)(y^4+1)=x^4y^4+x^4+y^4+1$
$=x^4y^4+(x^2+y^2)^2-2x^2y^2+1$
$=x^4y^4+[(x+y)^2-2xy]^2-2x^2y^2+1$
$=x^4y^4+2x^2y^2-48xy+145$
$=t^4+2t^2-48t+145$
$=t(t^3+2t-48)+145$
Vì $0\leq t\leq 3$ nên $t(t^3+2t-48)\leq 0$
$\Rightarrow P\leq 145$
Vậy $P_{\max}=145$. Giá trị này đạt tại $(x,y)=(0,2\sqrt{3})$ và hoán vị.
Giải :
Đặt \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}=k\Rightarrow\hept{\begin{cases}x=2013k\\y=2014k\\z=2015k\end{cases}}\)
Khi đó, ta có : 4(2013k - 2014k)(2014k - 2015k) = 4. (-k).(-k) = 4.k2 (1)
(2015k - 2013k)2 = (2k)2 = 22.k2 = 4k2 (2)
Từ (1) và (2) suy ta 4(x - y)(y - z) = (z - x)2
(3x - 1)^2016 + (5y - 3)^2016 < 0 (1)
có (3x - 1)^2016 > 0
(5y - 3)^2018 > 0
=> (3x-1)^2016 + (5y - 3)^2018 > 0 và (1)
=> (3x - 1)^2016 + (5y - 3)^2016 = 0
=> 3x - 1 = 0 và 5y - 3 = 0
=> x = 1/23 và y = 3/5