\(\sqrt{x^2-4x+5}\) \(\ge1\)đúng hay sai. giải thích
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^2\ge0\) với mọi \(x\)
nên cộng \(1\) vào mỗi vế của bất đẳng thức trên, ta được:
\(x^2+1\ge1\)
Dấu \("="\) xảy ra khi và chỉ khi \(x=0\)
Vậy, bất đẳng thức trên đúng!
( x + 2 ) + x + 12
= x + 2 + x + 12
Ta thấy : 14 không chia hết cho 4 → ( x + 2 ) + x + 12 không chia hết cho 4
Bạn có thể thử lại là biết ngay
sai ta có nhé : ("x"+ 2) + "x" + 12 =2"x" +14=2("x" + 7) với x chắn thì 2(x+7)chỉ chia hết cho 2 chứ ko chia hết cho 4
\(\left(x+2\right)^2=x^2-4x+4\)
\(\left(x+2\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow\left|x+2\right|=\left|x-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=x-2\\x+2=-x+2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0=-4\left(L\right)\\x=0\left(TM\right)\end{matrix}\right.\)
Lời giải:
a. Đúng, vì $x=0$ thì $x+1=1$, mà $0\vdots 1$
Mệnh đề phủ định:
$\forall x\in\mathbb{N}; x\not\vdots x+1$
b. Sai, vì $x=0$ thì $0^2<1$
Mệnh đề phủ định: $\exists x\in\mathbb{Z}, x\geq -1\Rightarrow x^2< 1$