tìm x\(\in\) N
a) n2+12n là số nguyên tố
b) 3n+6 là số nguyên tố
GIÚP MÌNH VỚI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo: https://tuhoc365.vn/qa/tim-cac-so-nguyen-duong-n-sao-cho-n260-n-la-mot-so-n/
a) n2+12n = n(n+12) là số nguyên tố
Mà nếu n là hợp số thì n(n+12) là hợp số
Mà nếu n là số nguyên tố thì n(n+12) là hợp số (chia hết cho n)
=> n không phải là hợp số và số nguyên tố
=> n = 0 hoặc n = 1
Mà nếu n = 0 thì n2+12n = 0 => loại
n = 1 => n2+12n = 13 =>chọn
Vậy n = 1
Lời giải:
a.
Nếu $n=0$ thì $2^n+22=23$ là snt (thỏa mãn)
Nếu $n>0$ thì $2^n$ chẵn, $22$ chẵn
$\Rightarrow 2^n+22$ chẵn. Mà $2^n+22>2$ nên không thể là snt (trái đề bài)
Vậy $n=0$
b. $13n$ là snt khi $n<2$
Mà $n$ là snt nên $n=0,1$. Nếu $n=0$ thì $13n=0$ không là snt
Nếu $n=1$ thì $13n=13$ là snt (tm)
a: TH1: p=3
=>p+14=17 và 4p+7=4*3+7=12+7=19(nhận)
TH2: p=3k+1
=>p+14=3k+15=3(k+5)
=>Loại
TH3: p=3k+2
4p+7=4(3k+2)+7=12k+8+7
=12k+15
=3(4k+5) chia hết cho 3
=>Loại
b: TH1: p=5
=>p+6=11; p+12=17; p+8=13; p+24=29
=>NHận
TH2: p=5k+1
=>p+24=5k+25=5(k+5)
=>Loại
TH3: p=5k+2
p+8=5k+10=5(k+2) chia hết cho 5
=>Loại
TH4: p=5k+3
p+12=5k+15=5(k+3)
=>loại
TH5: p=5k+4
=>p+6=5k+10=5(k+2)
=>Loại
Lời giải:
$n^2+12n=n(n+12)$ nên để $n^2+12n$ là số nguyên tố thì 1 trong 2 thừa số $n, n+12$ bằng $1$, số còn lại là số nguyên tố.
Mà $n< n+12$ nên $n=1$
Khi đó: $n^2+12n=1^2+12.1=13$ là số nguyên tố (thỏa mãn)
- Nếu p = 2 => p + 4 = 6 => hợp số (loại)
- Nếu p = 3 => p + 6 = 9 => hợp số (loại)
- Nếu p = 5 => p + 4 = 9 => hợp số (loại)
- Nếu p = 7 => p + 4 = 11 ; p + 6 = 13 ; p + 10 = 17 ; p + 12 = 19 ; p + 16 = 23 ; p + 22 = 29 => số nguyên tố (thỏa mãn)
- Nếu p > 7 => p không chia hết cho 7
+) Nếu p = 7k + 1 => p + 6 = 7k + 1 + 6 = 7k + 7 => hợp số (loại)
+) Nếu p = 7k + 2 => p + 12 = 7k + 2 + 12 = 7k + 14 => hợp số (loại)
+) Nếu p = 7k + 3 => p + 4 = 7k + 3 + 4 = 7k + 7 => hợp số (loại)
+) Nếu p = 7k + 4 => p + 10 = 7k + 4 + 10 = 7k + 14 => hợp số (loại)
+) Nếu p = 7k + 5 => p + 16 = 7k + 5 + 16 = 7k + 21 => hợp số (loại)
+) Nếu p = 7k + 6 => p + 22 = 7k + 6 + 22 = 7k + 28 => hợp số (loại)
Vậy p = 7
vì p là số nguyên tố nên p là 2;3;5;7;9;,......
mà có số 4;6;12;16;22;24 đều ko phải số nguyên tố
=> p là số lẻ
vậy p là:(;3;5;7;9,.....)
nên p=7 vì p + với 4;6;12;16;22;24 đều là số nguyên tố