Tìm giá trị lớn nhất, giá trị nhỏ nhất:
a)\(|3x-5|+|3x-7|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTNN
A = x2 - 10x + 3 = ( x2 - 10x + 25 ) - 22 = ( x - 5 )2 - 22 ≥ -22 ∀ x
Dấu "=" xảy ra khi x = 5
=> MinA = -22 <=> x = 5
B = 3x2 + 7x - 2 = 3( x2 + 7/3x + 49/36 ) - 73/12 = 3( x + 7/6 )2 - 73/12 ≥ -73/12 ∀ x
Dấu "=" xảy ra khi x = -7/6
=> MinB = -73/12 <=> x = -7/6
Tìm GTLN
A = -9x2 + 12x - 5 = -9( x2 - 4/3x + 4/9 ) - 1 = -9( x - 2/3 )2 - 1 ≤ -1 ∀ x
Dấu "=" xảy ra khi x = 2/3
=> MaxA = -1 <=> x = 2/3
B = -2x2 - 3x + 7 = -2( x2 + 3/2x + 9/16 ) + 65/8 = -2( x + 3/4 )2 + 65/8 ≤ 65/8 ∀ x
Dấu "=" xảy ra khi x = -3/4
=> MaxB = 65/8 <=> x = -3/4
\(E=x^2+3x+7=x^2+2.\frac{3}{2}x+\frac{9}{4}+\frac{19}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)
Vậy \(E_{min}=\frac{19}{4}\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)
\(y=5\left[\dfrac{3}{5}sin\left(3x+\dfrac{\pi}{6}\right)+\dfrac{4}{5}cos\left(3x+\dfrac{\pi}{6}\right)\right]\)
\(y=5.sin\left(3x+\dfrac{\pi}{6}+a\right)\) với \(cosa=\dfrac{3}{5}\)
Do \(-1\le sin\left(3x+\dfrac{\pi}{6}+a\right)\le1\)
\(\Rightarrow-5\le y\le5\)
\(E=\left(2x-5\right)^{10}-12\ge-12\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(E_{min}=-12\Leftrightarrow x=\dfrac{5}{2}\)
\(F=\left(x+5\right)^8+\left|x+5\right|+22\ge22\)
Dấu "=" xảy ra \(\Leftrightarrow x=-5\)
Vậy \(F_{min}=22\Leftrightarrow x=-5\)
\(G=17-\left|3x-2\right|\)
Dấu "=" xảy ra \(x=\dfrac{2}{3}\)
Vậy \(G_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
\(K=17-\left|3x-2\right|-\left(2-3x\right)^{2020}\le17\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(K_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
\(D=-3x^2+2x-5\)
\(=-\left(3x^2-2x+5\right)\)
\(=-\left[\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{11}{3}\right]\)
\(=-\left[\left(\sqrt{3}x-\frac{2}{\sqrt{3}}\right)^2+\frac{11}{3}\right]\)
\(=-\left(\sqrt{3}x-\frac{2}{\sqrt{3}}\right)^2-\frac{11}{3}\le\frac{-11}{3}\)
Vậy \(D_{max}=\frac{-11}{3}\Leftrightarrow\sqrt{3}x-\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{2}{3}\)
bài này làm đúng nhưng mà sai xíu là \(\frac{2}{\sqrt{3}}\)thành \(\frac{1}{\sqrt{3}}\)và \(-\frac{11}{3}\)thành \(-\frac{14}{3}\)
Ta có:
\(|3x-5|+|3x-7|\)
\(=|3x-5|+|7-3x|\)
\(\ge|3x-5+7-3x|\)
\(=2\)
Dấu "=" xảy ra khi \(\left(3x-5\right)\left(7-3x\right)\ge0\Leftrightarrow\frac{5}{3}\le x\le\frac{7}{3}\)
Đặt biểu thức trên là A ta có :
\(A=\left|3x-5\right|+\left|3x-7\right|\)
\(A=\left|5-3x\right|+\left|3x-7\right|\ge\left|5-3x+3x-7\right|=\left|-2\right|=2\)
\(\Rightarrow A\ge2\)
Dấu bằng xảy ra
\(\Leftrightarrow\left(5-3x\right)\left(3x-7\right)\ge0\)
\(\Leftrightarrow\frac{5}{3}\le x\le\frac{7}{3}\)
Vậy .................................