1 x 0 + 1 x 0 + 4 =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
đăng ít thôi bạn! Nếu bạn đăng lẻ ra thì bn sẽ nhận đc sự trợ giúp nhanh hơn !
a) Ta có: \(\left|x-3\right|+\left|y-2x\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x=2\cdot3=6\end{matrix}\right.\)
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
a)
\(\left(x-2\right)\left(x+7\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2\ge0\\x+7\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2\le0\\x+7\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2\le x\le-7\left(vô-lý\right)\\-7\le x\le2\end{matrix}\right.\)
=> -7 ≤ x ≤ 2
b) Em làm tương tự câu a nhé
c) \(\left(3x+1\right)\left(x-4\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x+1< 0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x+1>0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}>x>4\left(vô-lý\right)\\-\dfrac{1}{3}< x< 4\end{matrix}\right.\)
d) \(\left(x-1\right)\left(2x-1\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>1\\x< \dfrac{1}{2}\end{matrix}\right.\)
a) \(\left(4x+2\right)\left(x^2+1\right)=0\)
\(2.\left(2x+1\right)\left(x^2+1\right)=0\)
\(\Rightarrow2x+1=0\) vì \(x^2+1>0\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\frac{-1}{2}\)
b) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+7=0\\x-5=0\end{cases}}\)hoặc \(5x+1=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-7}{2}\\x=5\end{cases}}\) hoặc \(x=\frac{-1}{5}\)
vậy...
làm tiếp
c) \(\left(x^2+4\right)\left(x-2\right)\left(3-2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\3-2x=0\end{cases}}\) vì \(x^2+4>0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)
vậy...
d) \(\left(x-6\right)\left(x+1\right)-2\left(x+1\right)=0\)
\(\left(x-6-2\right)\left(x+1\right)=0\)
\(\left(x-8\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
vậy...
e) \(\left(x-1\right)^2-4=0\)
\(\left(x-1\right)^2-2^2=0\)
\(\left(x-1-2\right)\left(x-1+2\right)=0\)
\(\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
vậy...
1.
\(2x^2-4=0\)
\(\Leftrightarrow 2x^2=4\Leftrightarrow x^2=2\)
\(\Rightarrow \left[\begin{matrix} x=\sqrt{2}\\ x=-\sqrt{2}\end{matrix}\right.\)
2.
\(x^2+1=0\Leftrightarrow x^2=-1\). Điều này vô lý do bình phương của một số thực luôn không âm, trong khi $-1$ là số âm.
3.
\((x-1)^2+2=0\Leftrightarrow (x-1)^2=-2\)
Điều này vô lý do bình phương của một số thực luôn không âm, trong khi $-2$ là số âm.
4.
Ta thấy \(|a|=|-a|\) với mọi $a\in\mathbb{R}$
Do đó \(|x-1|=|-(x-1)|=|1-x|\) luôn đúng với mọi $x\in\mathbb{R}$
Tức là $x$ có thể là số thực bất kỳ.
5.
\(\sqrt{x+1}=2\sqrt{-x}\) (ĐK: \(\left\{\begin{matrix} x+1\geq 0\\ -x\geq 0\end{matrix}\right.\Leftrightarrow -1\leq x\leq 0\) )
Bình phương 2 vế:
\(\Rightarrow x+1=4(-x)\Leftrightarrow 5x+1=0\Leftrightarrow x=\frac{-1}{5}\) (thỏa mãn)
6.
\(|x-1|+1=0\Leftrightarrow |x-1|=-1\)
Điều này vô lý do giá trị tuyệt đối của một số luôn không âm, mà $-1$ là số âm.
Vậy không tồn tại $x$ thỏa mãn.
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
1 x 0 + 1 x 0 + 4 = 4
1x0+1x0+4=4