Cho 3 số dương a,b,c<2. Chứng minh ít nhất một trong các bất đẳng thức sau là sai: a(2-b)>1; b(2-c)>1; c(2-a)>1.
(Gợi ý: Chứng minh bằng phương pháp phản chứng)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh BĐT
( a + b + c ) ( 1 a + 1 b + 1 c ) ≥ 9 ( * ) ( * ) < = > 3 + ( a b + b a ) + ( b c + c b ) + ( c a + a c ) ≥ 9
Áp dụng BĐT Cô – si cho hai số dương ta có:
a b + b a ≥ 2 b c + c b ≥ 2 c a + a c ≥ 2 =>(*) đúng
= > 9 a + b + c ≤ 1 a + 1 b + 1 c ≤ 3 = > a + b + c ≥ 3
Trở lại bài toán: Áp dụng BĐT Cô si cho hai số dương ta có 1 + b 2 ≥ 2 b
Ta có: a 1 + b 2 = a − a b 2 1 + b 2 ≥ a − a b 2 2 b = a − a b 2 ( 1 )
Tương tự ta có:
b 1 + c 2 ≥ b − b c 2 ( 2 ) c 1 + a 2 ≥ c − c a 2 ( 3 )
Cộng từng vế của (1), (2) và (3) ta có:
a 1 + b 2 + b 1 + c 2 + c 1 + a 2 ≥ a + b + c − 1 2 ( a b + b c + c a ) = > a 1 + b 2 + b 1 + c 2 + c 1 + a 2 + 1 2 ( a b + b c + c a ) ≥ a + b + c ≥ 3
Chọn đáp án A
Phương pháp
Quan sát các đồ thị hàm số, nhận xét tính đồng biến nghịch biến và suy ra điều kiện của a, b.
Cách giải
Đồ thị hàm số C 1 có hướng đi lên từ trái qua phải nên hàm số y = log a x đồng biến hay a>1.
Đồ thị hàm số C 2 có hướng đi xuống từ trái qua phải nên hàm số y = log b x nghịch biến hay 0<b<1.
Do đó 0<b<1<a.
Câu 1:
#include <bits/stdc++.h>
using namespace std;
double a,b,c;
int main()
{
cin>>a>>b>>c;
cout<<fixed<<setprecision(2)<<(a+b+c)/3;
return 0;
}
Câu 1:
#include <bits/stdc++.h>
using namespace std;
long long n;
int main()
{
cin>>n;
int t=0;
while (n>0)
{
int x=n%10;
t=t+x;
n=n/10;
}
cout<<t;
return 0;
}
Giả sử \(a\left(2-b\right)>1,b\left(2-c\right)>1,c\left(2-a\right)>1\)
\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)>1\) (1)
Mặt khác, ta có:
\(a\left(2-a\right)=-a^2+2a=-\left(a-1\right)^2+1\le1\)
Tương tự, \(b\left(2-b\right)\le1,c\left(2-c\right)\le1\)
\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)\le1\),điều này trái với (1)
Vậy điều giả sử là sai.
Do đó ít nhất 1 trong 3 bất đẳng thức trên là sai.