K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2018

2x+1 + 2x = 24

2x.(2+1) = 24

2x.3 = 24

2x = 8 = 23

=> x = 3

29 tháng 2 2020

a) \(4\left(x+3\right)^2=\left(2x+6\right)^2\)

\(\Leftrightarrow2^2\left(x+3\right)^2=\left(2x+6\right)^2\)

\(\Leftrightarrow\left(2x+6\right)^2=\left(2x+6\right)^2\)

Vậy tập nghiệm của phương trình là \(S=ℝ\)

b) \(\left(3x+4\right)^2=4\left(x+3\right)\)

\(\Leftrightarrow9x^2+24x+16=4x+12\)

\(\Leftrightarrow9x^2+20x+4=0\)

\(\Leftrightarrow\left(9x+2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}9x+2=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{9}\\x=-2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{2}{9};-2\right\}\)

c) \(\left(6x+3\right)^2=\left(x-4\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}6x+3=x-4\\6x+3=4-x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x+7=0\\7x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{5}\\x=\frac{1}{7}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{7}{5};\frac{1}{7}\right\}\)

d) \(\left(x^2+3x+2\right)\left(x^2+3x+3\right)-2=0\)

Đặt \(t=x^2+3x+2\), ta có :

     \(t\left(t+1\right)-2=0\)

\(\Leftrightarrow t^2+t-2=0\)

\(\Leftrightarrow\left(t+2\right)\left(t-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+2=0\\t-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+3x+4=0\\x^2+3x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\\\left(x+\frac{3}{2}\right)^2-1,25=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=\pm\sqrt{1,25}-\frac{3}{2}=-\frac{3\pm\sqrt{5}}{2}\)(tm)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{3\pm\sqrt{5}}{2}\right\}\)

29 tháng 2 2020

e)Đề bài sai ! Mik sửa :

 \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)

Đặt \(t=x^2-5x\), ta có :

       \(t^2+10t-24=0\)

\(\Leftrightarrow\left(t+12\right)\left(t-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+12=0\\t-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-5x+12=0\\x^2-5x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{5}{2}\right)^2+\frac{23}{4}=0\left(ktm\right)\\\left(x-\frac{5}{2}\right)^2-\frac{33}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=\pm\frac{\sqrt{33}}{2}+\frac{5}{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{\sqrt{33}}{2}+\frac{5}{2};-\frac{\sqrt{33}}{2}+\frac{5}{2}\right\}\)

f) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+2\right)-12=0\)

Đặt \(t=x^2+x+1\), ta có :

    \(t\left(t+1\right)-12=0\)

\(\Leftrightarrow t^2+t-12=0\)

\(\Leftrightarrow\left(t+4\right)\left(t-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+5=0\\x^2+x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}-\frac{1}{2}=1\left(tm\right)\\x=-\frac{3}{2}-\frac{1}{2}=-2\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-2\right\}\)

g) \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt \(t=x^2+x\), ta có :

     \(t\left(t-2\right)-24=0\)

\(\Leftrightarrow t^2-2t-24=0\)

\(\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}-\frac{1}{2}=2\left(tm\right)\\x=-\frac{5}{2}-\frac{1}{2}=-3\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;-3\right\}\)

h) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(t=x^2+5x+4\), ta có :

     \(t\left(t+2\right)-24=0\)

\(\Leftrightarrow t^2+2t-24=0\)

\(\Leftrightarrow\left(t+6\right)\left(t-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+6=0\\t-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+5x+10=0\\x^2+5x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\x\left(x+5\right)=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-5\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;-5\right\}\)

9 tháng 1 2018

1, 54 : x - 1 = 5

54 : x = 5+1 = 6

x = 54 : 6 = 9

2, 42 : x + 0 = 8

x = 42 : 8 = 21/4

3, 24 : x - 8 = 0

24 : x = 0 + 8 = 8

x = 24 : 8 = 3

Tk mk nha

9 tháng 1 2018

1) 54:x-x:x=3x2-1

    54:x-  1 =6-1

    54:x-   1=5

    54:x      =6

         x=54:6=9

              

6 tháng 3 2020

a) x4 - 5x2 + 4 = 0 (*)

đặt x= m (\(m\ge0\))

(*) <=> m2 - 5m + 4 = 0

m2 - 4m - m + 4 = 0

m(m - 4) - (m - 4) = 0

(m - 4)(m - 1) = 0

vậy m - 4 = 0 hoặc m - 1 = 0 

hay m = 4 hoặc m = 1

m = 4 => x2 = 4 => \(x=\pm2\)

m = 1 => x2 = 1 => \(x=\pm1\)

6 tháng 3 2020

d) \(x\left(x+1\right)\left(x-1\right)\left(x-2\right)=24\)

\(\Leftrightarrow\left[x\left(x-1\right)\right]\left[\left(x+1\right)\left(x-2\right)\right]=24\)

\(\Leftrightarrow\left(x^2-x\right)\left(x^2-x-2\right)-24=0\)

\(\Leftrightarrow\left(x^2-x\right)^2-2\left(x^2-x\right)+1-25=0\)

\(\Leftrightarrow\left(x^2-x+1\right)^2-25=0\)

\(\Leftrightarrow\left(x^2-x+6\right)\left(x^2-x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-x+6=0\left(1\right)\\x^2-x-4=0\left(2\right)\end{cases}}\)

+) Pt (1) \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{23}{4}\) ( vô nghiệm )

+) Pt (2) \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{17}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{17}}{4}+\frac{1}{2}\\x=-\frac{\sqrt{17}}{4}+\frac{1}{2}\end{cases}}\) ( thỏa mãn )

Vậy  pt đã cho có nghiệm \(S=\left\{\pm\frac{\sqrt{17}}{4}+\frac{1}{2}\right\}\)

27 tháng 5 2021

1) 10/2/5 hay 52/5
2) 90

24 tháng 2 2020

b, Ta có : \(\left(x^2-x\right)^2-2=x^2-x\)

             \(\Leftrightarrow t^2-2=t\)

             \(\Leftrightarrow\orbr{\begin{cases}t=2\\t=-1\end{cases}}\)

             \(\Leftrightarrow\orbr{\begin{cases}x^2-x=2\\x^2-x=-1\end{cases}}\)

             \(\Leftrightarrow\hept{\begin{cases}x=2\\x=-1\\x\notinℝ\end{cases}}\)

             \(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

Vậy \(x_1=-1;x_2=2\)

24 tháng 2 2020

c, Ta có : \(x.\left(x+1\right).\left(x-1\right).\left(x+2\right)=24\)

             \(\Leftrightarrow x.\left(x^2-1\right).\left(x+2\right)=24\)

              \(\Leftrightarrow\left(x^3-x\right).\left(x+2\right)=24\)

              \(\Leftrightarrow x^4+2.x^3-x^2-2.x=24\)

              \(\Leftrightarrow x^4+2.x^3-x^2-2.x-24=0\)

              \(\Leftrightarrow x^4-2.x^3+4.x^3-8.x^2+7.x^2-14.x+12.x-24=0\)

              \(\Leftrightarrow x^3.\left(x-2\right)+4.x^2.\left(x-2\right)+7.x.\left(x-2\right)+12.\left(x-2\right)=0\)

              \(\Leftrightarrow\left(x-2\right).\left(x^3+4.x^2+x^2+7.x+12\right)=0\)

              \(\Leftrightarrow\left(x-2\right).\left(x^3+3.x^2+x^2+3.x+4.x+12\right)=0\)

             \(\Leftrightarrow\left(x-2\right).\left[x^2.\left(x+3\right)+x.\left(x+3\right)+4.\left(x+3\right)\right]=0\)

             \(\Leftrightarrow\left(x-2\right).\left(x+3\right).\left(x^2+x+4\right)=0\)

              \(\Rightarrow\hept{\begin{cases}x-2=0\\x+3=0\\x^2+x+4=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\x=-3\\x\notinℝ\end{cases}}\)

               \(\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)

Vậy \(x_1=-3;x_2=2\)

              

21 tháng 7 2016

d ) 

=(x2-3x)(x2-3x+2)-24

đặt x2-3x+1=a ta đc 

(a-1)(a+1)-24

=a2-1-24=a2-25

=(a-5)(a+5)

=(x2-3x+1+5)(x2-3x+1-5)

=(x2-3x+6)(x2-3x-4)

=(x2-3x+6)(x2-4x+x-4)

=(x2-3x+1)[x(x-4)+(x-4)]

=(x-4)(x+1)(x2-3x+1)

mấy câu kia làm tương tự nhé 

8 tháng 7 2016

Bài 2: Tìm x:

a. (x + 1) + (x + 2) + (x + 3) = 24 

(x + x + x) + (1 +2 + 3) = 24

x × 3 + 6 = 24 

x × 3 = 24 - 6 

x × 3 = 18 

x = 18 : 3

x = 6

b. x + x + 8 = 24

2 × x + 8 = 24

2 × x = 24 - 8

2 × x = 16

x = 16 : 2

x = 8

2 tháng 3 2022

\(a)x=\dfrac{1}{4}+\dfrac{5}{13}=\dfrac{33}{52}.\\ b)\dfrac{x}{3}=\dfrac{2}{3}+\dfrac{-1}{7}.\\ \Leftrightarrow\dfrac{x}{3}=\dfrac{11}{21}.\\ \Leftrightarrow\dfrac{7x}{21}=\dfrac{11}{21}.\\ \Rightarrow7x=11.\\ \Leftrightarrow x=\dfrac{11}{7}.\\ c)\dfrac{x}{3}=\dfrac{16}{24}+\dfrac{24}{36}=\dfrac{2}{3}+\dfrac{2}{3}=\dfrac{4}{3}.\\ \Rightarrow x=4.\\ d)\dfrac{x}{15}=\dfrac{1}{5}+\dfrac{2}{3}=\dfrac{13}{15}.\\ \Rightarrow x=13.\)

Ta có: \(\dfrac{x^{24}+x^{20}+x^{16}+...+x^4+1}{x^{26}+x^{24}+x^{22}+...+x^2+1}\)

\(=\dfrac{x^{24}+x^{20}+x^{16}+...+x^4+1}{\left(x^{26}+x^{22}+...+x^2\right)+\left(x^{24}+x^{20}+x^{16}+...+x^4+1\right)}\)

\(=\dfrac{x^{24}+x^{20}+x^{16}+...+x^4+1}{x^2\left(x^{24}+x^{20}+...+1\right)+\left(x^{24}+x^{20}+x^{16}+...+x^4+1\right)}\)

\(=\dfrac{x^{24}+x^{20}+x^{16}+...+x^4+1}{\left(x^{24}+x^{20}+x^{16}+...+1\right)\left(x^2+1\right)}\)

\(=\dfrac{1}{x^2+1}\)

22 tháng 2 2021

 x24+x20+x16+...+x4+1x26+x24+x22+...+x2+1x24+x20+x16+...+x4+1x26+x24+x22+...+x2+1

=x24+x20+x16+...+x4+1(x26+x22+...+x2)+(x24+x20+x16+...+x4+1)=x24+x20+x16+...+x4+1(x26+x22+...+x2)+(x24+x20+x16+...+x4+1)

=x24+x20+x16+...+x4+1x2(x24+x20+...+1)+(x24+x20+x16+...+x4+1)=x24+x20+x16+...+x4+1x2(x24+x20+...+1)+(x24+x20+x16+...+x4+1)

=x24+x20+x16+...+x4+1(x24+x20+x16+...+1)(x2+1)