Chứng minh \(\left(64.27\right)^6=12^{18}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(64.27\right)^6=4^{3.6}.3^{3.6}=\left(4.3\right)^{18}=12^{18}\)
\(\left(64.27\right)^6.75^{18}=\left(2^6.3^3\right)^6.\left(3.5^2\right)^{18}=2^{36}.3^{36}.5^{36}=\left(2.3.5\right)^{36}=30^{36}\)
12 { [ 18 - ( 6 : x + 3 ) ] - 3 } = 130 - 10 = 120
18 - ( 6 : x + 3 ) - 3 = 120 : 12 = 10
18 - ( 6 : x + 3 ) = 10 + 3 = 13
6 : x + 3 = 18 - 13 = 5
6 : x = 5 - 3 = 2
x = 6 : 2 = 3
Vậy x = 3
130 - 12{[18 - (6 : x + 3)] - 3} = 10
12{[18 - (6 : x + 3)] - 3} = 130 - 10
12{[18 - (6 : x + 3)] - 3} = 120
18 - (6 : x + 3) - 3 = 120 : 12
15 - (6 : x + 3) = 10
6 : x + 3 = 15 - 10
6 : x + 3 = 5
6 : x = 5 - 3
6 : x = 2
x = 6 : 2
x = 3
Vậy x = 3
\(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\sqrt{6}-\left(5\sqrt{\dfrac{1}{12}}+12\right)\)
\(=\left(2\sqrt{3}-6\sqrt{3}+2\sqrt{6}\right)\sqrt{6}-\left(\dfrac{5\sqrt{3}}{6}+12\right)\)
\(=6\sqrt{2}-18\sqrt{2}+12-\left(\dfrac{5\sqrt{3}+72}{6}\right)\)
\(=-12\sqrt{2}+12-\dfrac{5\sqrt{3}+72}{6}\)
\(=\dfrac{-72\sqrt{2}+72-5\sqrt{3}-72}{6}=\dfrac{5\sqrt{3}+72\sqrt{2}}{6}\simeq-18,4139\)
Ta có: \(-14,5\sqrt{2}\simeq-20,506\)
\(VT\ne VP\)
Đẳng thức không xảy ra
\(B=\left(\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}-1\right)\left(\sqrt{6}+1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}\right)\left(\sqrt{6}+11\right)\)
\(=\left(\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right)\left(\sqrt{6}+11\right)\)
\(=\left[3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\right]\left(\sqrt{6}+11\right)\)
\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
\(=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)
\(=6-121=-115\) là số nguyên (đpcm)
b) Ta có: \(B=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(=\left(\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right)\left(\sqrt{6}+11\right)\)
\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
\(=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)
=6-121=-115
\(\left(64.27\right)^6=12^{18}\Leftrightarrow1728^6=12^8\)
Ta có :
\(12^{18}=\left(12^3\right)^6=1728^6\)
Vì \(1728^6=1728^6\)
\(\Leftrightarrow\left(64.27\right)^6=12^{18}\) đó là điều mà ta phải chứng minh