Tìm a để:
a,\(\left(2x^2+ax-4\right):\left(x+4\right)\)
b,\(\left(x^2-ax-5a^2-\dfrac{1}{4}\right):\left(x+2a\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề thiếu nha
a) ta có : \(\dfrac{2x^2+ax-4}{x+4}\in Z\Leftrightarrow2x^2+ax-4=\left(x+4\right)\left(2x+b\right)\)
\(\Leftrightarrow x^2+ax-4=2x^2+\left(b+8\right)x+4b\) \(\Rightarrow4b=-4\Leftrightarrow b=-1\)
\(\Rightarrow a=b+8=-1+8=7\) vậy \(a=7\)
câu kia lm tương tự nha bn
a: \(\dfrac{2x^3-x^2+ax+b}{x^2-1}\)
\(=\dfrac{2x^3-2x-x^2+1+\left(a+2\right)x+b-1}{x^2-1}\)
\(=2x-1+\dfrac{\left(a+2\right)x+b-1}{x^2-1}\)
Để đây là phép chia hết thì a+2=0 và b-1=0
=>a=-2; b=1
b: \(\Leftrightarrow x^4-1+ax^2-a+bx+a⋮x^2-1\)
=>bx+a=0
=>a=b=0
a) Đặt \(f\left(x\right)=x^3+ax+b\)
Vì \(f\left(x\right)⋮x^2+x-2\)
\(\Rightarrow f\left(x\right)=\left(x^2+x-2\right)q\left(x\right)\)
\(=\left(x^2-x+2x-2\right)q\left(x\right)\)
\(=\left[x\left(x-1\right)+2\left(x-1\right)\right]q\left(x\right)\)
\(=\left(x-1\right)\left(x+2\right)q\left(x\right)\)
\(\Rightarrow f\left(1\right)=\left(1-1\right)\left(1+2\right)q\left(1\right)\)
\(\Rightarrow f\left(1\right)=0\left(1\right)\)
\(f\left(-2\right)=\left(-2-1\right)\left(-2+2\right)q\left(-2\right)\)
\(\Rightarrow f\left(-2\right)=0\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1+a+b=0\\-8-2a+b=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-1\\-2a+b=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)
Vậy a=-3 và b=2 thì \(\left(x^3+ax+b\right)⋮\left(x^2+x-2\right)\)
Ta có \(f\left(1\right)=g\left(2\right)\)
hay \(2.1^2+a.1+4=2^2-5.2-b\)
\(2+a+4\) \(=4-10-b\)
\(6+a\) \(=-6-b\)
\(a+b\) \(=-6-6\)
\(a+b\) \(=-12\) \(\left(1\right)\)
Lại có \(f\left(-1\right)=g\left(5\right)\)
hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\)
\(2-a+4\) \(=25-25-b\)
\(6-a\) \(=-b\)
\(-a+b\) \(=-6\)
\(b-a\) \(=-6\)
\(b\) \(=-b+a\) \(\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:
\(a+\left(-6+a\right)=-12\)
\(a-6+a\) \(=-12\)
\(a+a\) \(=-12+6\)
\(2a\) \(=-6\)
\(a\) \(=-6:2\)
\(a\) \(=-3\)
Mà \(a=-3\)
⇒ \(b=-6+\left(-3\right)=-9\)
Vậy \(a=3\) và \(b=-9\)
Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "