K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2018

a ) Ta có : \(2x-x^2-3=-\left(x^2-2x+3\right)=-\left(x^2-2x+1+2\right)=-\left[\left(x-1\right)^2+2\right]=-\left(x-1\right)^2-2\)

Do \(-\left(x-1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-1\right)^2-2\le-2< 0\forall x\)

\(\left(đpcm\right)\)

b ) Đề thiếu

:D

Bài 5: 

a: \(8A=8+8^2+...+8^8\)

\(\Leftrightarrow7A=8^8-1\)

hay \(A=\dfrac{8^8-1}{7}\)

b: \(8B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)

\(\Leftrightarrow8B=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\)

\(\Leftrightarrow8B=3^{16}-1\)

hay \(B=\dfrac{3^{16}-1}{8}\)

30 tháng 9 2020

hơi ngán dạng này :((((

a, \(x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)

b,

\(x^2-\frac{1}{3}x+\frac{5}{4}=x^2-2.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{5}{4}=\left(x-\frac{1}{6}\right)^2+\frac{11}{9}>0\forall x\)

c,

\(x-x^2-3=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}-3=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}< 0\forall x\)d,

\(x-2x^2-\frac{5}{2}=-2\left(x^2-\frac{1}{2}x+\frac{5}{4}\right)=-2\left(x^2-2.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{4}\right)=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{19}{16}\right]=-2\left(x-\frac{1}{4}\right)^2-\frac{19}{8}< 0\forall x\)P/s : ko chắc lém :)))

2 tháng 10 2020

cảm ơn bạn nhìuuu 💞

5 tháng 7 2018

\(a.A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4>0\text{∀}x\)

\(b.B=x^2-2x+9y^2-6y+3=x^2-2x+1+9y^2-6y+1+1=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\text{∀}x,y\)

5 tháng 7 2018

a. \(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4>0\forall x\)

b. \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\forall x;y\)

15 tháng 12 2016

a) \(x^2-2x+3=\left(x^2-2x+1\right)+2=\left(x-1\right)^2+2\)

Vì: \(\left(x-1\right)^2\ge0,\forall x\)

=> \(\left(x-1\right)^2+2>0,\forall x\)

=>đpcm

b) \(x^2+7x+13=\left(x^2+7x+\frac{49}{4}\right)+\frac{3}{4}=\left(x+\frac{7}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x+\frac{7}{2}\right)^2\ge0,\forall x\)

=> \(\left(x+\frac{7}{2}\right)^2+\frac{3}{4}>0,\forall x\)

=>đpcm

c) \(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì: \(-\left(x-\frac{1}{2}\right)^2\le0,\forall x\)

=> \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0,\forall x\)

=>đpcm

15 tháng 12 2016

ng đầu tiên trên hoc24 nắm chắc kiến thức toán học là cj đó

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự