Tìm x
a) \(\frac{3}{5}^{2x+1}\)=\(\frac{81}{625}\)
b)\(\left(\frac{2}{3}^x\right)\). \(\left(\frac{2}{3}^3\right)\)=\(\frac{32}{243}\)
c)(2x-1)\(^2\)=(2x-1)\(^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3^x>\dfrac{1}{243}\\ \Leftrightarrow3^x>3^{-5}\\ \Leftrightarrow x>-5\\ b,\left(\dfrac{2}{3}\right)^{3x-7}\le\dfrac{3}{2}\\ \Leftrightarrow3x-7\le1\\ \Leftrightarrow3x\le8\\ \Leftrightarrow x\le\dfrac{8}{3}\\ c,4^{x+3}\ge32^x\\ \Leftrightarrow2^{2x+6}\ge2^{5x}\\ \Leftrightarrow2x+6\ge5x\\ \Leftrightarrow3x\le6\\ \Leftrightarrow x\le2\)
d, Điều kiện: x > 1
\(log\left(x-1\right)< 0\\ \Leftrightarrow x-1< 1\\ \Leftrightarrow1< x< 2\)
e, Điều kiện: \(x>\dfrac{1}{2}\)
\(log_{\dfrac{1}{5}}\left(2x-1\right)\ge log_{\dfrac{1}{5}}\left(x+3\right)\\ \Leftrightarrow2x-1\ge x+3\\ \Leftrightarrow x\ge4\)
f, Điều kiện: x > 4
\(ln\left(x+3\right)\ge ln\left(2x-8\right)\\ \Leftrightarrow x+3\ge2x-8\\\Leftrightarrow4< x\le11\)
Bài 1:
b) \(\left(x+\frac{1}{2}\right).\left(x-\frac{3}{4}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{2}=0\\x-\frac{3}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0-\frac{1}{2}\\x=0+\frac{3}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\frac{3}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{2};\frac{3}{4}\right\}.\)
c) \(\left(2x-5\right)^4=81\)
\(\Rightarrow2x-5=\pm3\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=3\\2x-5=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=3+5=8\\2x=\left(-3\right)+5=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8:2\\x=2:2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)
Vậy \(x\in\left\{4;1\right\}.\)
d) \(3^{x+1}+3^{x+3}=810\)
\(\Rightarrow3^x.3^1+3^x.3^3=810\)
\(\Rightarrow3^x.\left(3^1+3^3\right)=810\)
\(\Rightarrow3^x.30=810\)
\(\Rightarrow3^x=810:30\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
Vậy \(x=3.\)
Chúc bạn học tốt!
a) \(\left(x+1\right)-\frac{x+1}{3}=\frac{5\left(x+1\right)-1}{6}\)
\(\Leftrightarrow6\left(x+1\right)-2\left(x+1\right)=5\left(x+1\right)-1\)
\(\Leftrightarrow6x+6-2x-2=5x+5-1\)
\(\Leftrightarrow6x-2x-5x=5-1-6+2\)
\(\Leftrightarrow-x=0\)
\(\Leftrightarrow x=0\)
b) \(\left(1-x\right)^2+\left(x+2\right)^2=2x\left(x-3\right)-7\)
\(\Leftrightarrow1-2x+x^2+x^2+4x+4=2x^2-6x-7\)
\(\Leftrightarrow2x^2+2x+5=2x^2-6x-7\)
\(\Leftrightarrow2x+6x=-7-5\)
\(\Leftrightarrow8x=-12\)
\(\Leftrightarrow x=-\frac{3}{2}\)
c) \(2+\frac{x-2}{2}-\frac{2x-4}{3}-\frac{5}{6}\left(2-x\right)=0\)
\(\Leftrightarrow2+\frac{x}{2}-1-\frac{2}{3}x+\frac{4}{3}-\frac{5}{3}+\frac{5}{6}x=0\)
\(\Leftrightarrow\frac{x}{2}-\frac{2}{3}x+\frac{5}{6}x=-2+1-\frac{4}{3}+\frac{5}{3}\)
\(\Leftrightarrow\frac{2}{3}x=-\frac{2}{3}\)
\(\Leftrightarrow x=-1\)
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
Bài 5 :
a, Ta có : \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
=> \(\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)
=> \(3\left(2x+1\right)^2-5\left(x-1\right)^2=7x^2-14x-5\)
=> \(12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)
=> \(36x+3=0\)
=> \(x=-\frac{1}{12}\)
Vậy phương trình trên có nghiệm là \(S=\left\{-\frac{1}{12}\right\}\)
b, Ta có : \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
=> \(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)
=> \(5\left(7x-1\right)+60x=6\left(16-x\right)\)
=> \(35x-5+60x-96+6x=0\)
=> \(101x-101=0\)
=> \(x=1\)
Vậy phương trình trên có tạp nghiệm là \(S=\left\{1\right\}\)
c, Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
=> \(\frac{8\left(x-2\right)^2}{24}-\frac{3\left(2x-3\right)\left(2x+3\right)}{24}+\frac{4\left(x-4\right)^2}{24}=0\)
=> \(8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x-4\right)^2=0\)
=> \(8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2-8x+16\right)=0\)
=> \(8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)
=> \(-64x+123=0\)
=> \(x=\frac{123}{64}\)
Vậy phương trình có nghiệm là \(S=\left\{\frac{123}{64}\right\}\)
\(a)\)\(\left(\frac{3}{5}\right)^{2x+1}=\frac{81}{625}\)
\(\Leftrightarrow\)\(\left(\frac{3}{5}\right)^{2x+1}=\left(\frac{3}{5}\right)^4\)
\(\Leftrightarrow\)\(2x+1=4\)
\(\Leftrightarrow\)\(x=\frac{3}{2}\)
Vậy \(x=\frac{3}{2}\)
\(b)\)\(\left(\frac{2}{3}\right)^x.\left(\frac{2}{3}\right)^3=\frac{32}{243}\)
\(\Leftrightarrow\)\(\left(\frac{2}{3}\right)^{x+3}=\left(\frac{2}{3}\right)^5\)
\(\Leftrightarrow\)\(x+3=5\)
\(\Leftrightarrow\)\(x=2\)
Vậy \(x=2\)
\(c)\)\(\left(2x-1\right)^2=\left(2x-1\right)^3\)
\(\Leftrightarrow\)\(\left(2x-1\right)^3-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\)\(\left(2x-1\right)^2\left(2x-1-1\right)=0\)
\(\Leftrightarrow\)\(\left(2x-1\right)^2\left(2x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(2x-1\right)^2=0\\2x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}}\)
Vậy \(x=\frac{1}{2}\) hoặc \(x=1\)
Chúc bạn học tốt ~