K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+2}{2}=\frac{y+3}{3}=\frac{z+4}{4}=\frac{2x+4}{4}=\frac{2x+4+y+3+z+4}{4+3+4}=\frac{\left(2x+y+z\right)+\left(4+3+4\right)}{11}=\frac{14+11}{11}=\frac{25}{11}\)

+) \(\frac{x+2}{2}=\frac{25}{11}\Rightarrow x+2=\frac{50}{11}\Rightarrow x=\frac{28}{11}\)

+) \(\frac{y+3}{3}=\frac{25}{11}\Rightarrow y+3=\frac{75}{11}\Rightarrow y=\frac{42}{11}\)

+) \(\frac{z+4}{4}=\frac{25}{11}\Rightarrow z+4=\frac{100}{11}\Rightarrow z=\frac{56}{11}\)

\(\Rightarrow xyz=\frac{28}{11}.\frac{42}{11}.\frac{56}{11}=\frac{65856}{1331}\)

Vậy \(xyz=\frac{65856}{1331}\)

8 tháng 11 2016

x=\(\frac{28}{9}\)

21 tháng 5 2016

x-1/2 = y-2/3 = z-3/4 =2x- 2/4 = 3y - 6/9 = 2x + 3y -z - 5/ 9 = 10

=> x = 21 , y = 32 , z = 43

= > x + y + z = 96 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}\frac{3y-6}{9}=\frac{2x+3y-z-5}{9}=10\)

6 tháng 8 2016

Ta có : \(\frac{2x-2}{4}\)=\(\frac{3y-6}{9}\)=\(\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x-2}{4}\)=\(\frac{3y-6}{9}\)=\(\frac{z-3}{4}\)=\(\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)=\(\frac{2x+3y-z-5}{9}\)=\(\frac{45}{9}\)=5

=> x = 11

y = 17

z = 23

=> x + y + z = 11 + 17 + 23 = 51

20 tháng 12 2016

1a.Ta có: 
x-1/2=y-2/3=z-3/4<=>(2x-1)/2=(3y-2)/3=... 
=>(50-3z)4=4z-3<=>200-12z=4z-3<=>16z=2... 
=>z=203/16.thay vào dãy tỉ số ban đầu ta tìm được x=199/16,y=605/16 
câu 2: 
bạn chép sai đề bài rồi hay sao ấy 
đề bài phải thế này mới đúng:cho đk như bạn.cmr:(a^3+b^3+c^3)/(b^3+c^3+d^3)=a/d 
giải theo tỉ lệ thức là ra ngay đấy mà.Cố lên bạn nhé!

27 tháng 11 2015

Ta co x+2/2=y+3/3=z+4/4  hay  x+1=y+1=z+1  =>  x=y=z

Suy ra:   2x+y+z=11 hay  2x+x+x=11  =>  4x=11  =>  x=11/4

Vay: x^2+y^2+z^2 = (11/4)^2+(11/4)^2+(11/4)^2 =121/16 . 3 = 363/16                                        

24 tháng 12 2021

Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{x-1}{2}=\frac{2\left(y-2\right)}{6}=\frac{3\left(x-3\right)}{12}\)

hay 

\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\) và \(x-2y+3z=-10\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}=\frac{x-1-2y-4+3z-9}{8}\)

\(=\frac{\left(x-2y+3z\right)-\left(9+1-4\right)}{8}=\frac{-10-6}{8}=-\frac{16}{8}=-2\)

\(\Leftrightarrow\begin{cases}x-1=-2.2=-4\Rightarrow x=-4+1=-3\\y-2=-2.3=-6\Rightarrow y=-6+2=-4\\z-3=-2.4=-8\Rightarrow z=-8+3=-5\end{cases}\)

Khi đó : \(x+y+z=\left(-3\right)+\left(-4\right)+\left(-5\right)=-12\)