cho 3 số x,y,z thỏa mãn (x+2)/2=(ý+3)/3=(z+4)/4 và 2x+y+z=11 khi đó xyz=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+2}{2}=\frac{y+3}{3}=\frac{z+4}{4}=\frac{2x+4}{4}=\frac{2x+4+y+3+z+4}{4+3+4}=\frac{\left(2x+y+z\right)+\left(4+3+4\right)}{11}=\frac{14+11}{11}=\frac{25}{11}\)
+) \(\frac{x+2}{2}=\frac{25}{11}\Rightarrow x+2=\frac{50}{11}\Rightarrow x=\frac{28}{11}\)
+) \(\frac{y+3}{3}=\frac{25}{11}\Rightarrow y+3=\frac{75}{11}\Rightarrow y=\frac{42}{11}\)
+) \(\frac{z+4}{4}=\frac{25}{11}\Rightarrow z+4=\frac{100}{11}\Rightarrow z=\frac{56}{11}\)
\(\Rightarrow xyz=\frac{28}{11}.\frac{42}{11}.\frac{56}{11}=\frac{65856}{1331}\)
Vậy \(xyz=\frac{65856}{1331}\)
x-1/2 = y-2/3 = z-3/4 =2x- 2/4 = 3y - 6/9 = 2x + 3y -z - 5/ 9 = 10
=> x = 21 , y = 32 , z = 43
= > x + y + z = 96
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}\frac{3y-6}{9}=\frac{2x+3y-z-5}{9}=10\)
Ta có : \(\frac{2x-2}{4}\)=\(\frac{3y-6}{9}\)=\(\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x-2}{4}\)=\(\frac{3y-6}{9}\)=\(\frac{z-3}{4}\)=\(\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)=\(\frac{2x+3y-z-5}{9}\)=\(\frac{45}{9}\)=5
=> x = 11
y = 17
z = 23
=> x + y + z = 11 + 17 + 23 = 51
1a.Ta có:
x-1/2=y-2/3=z-3/4<=>(2x-1)/2=(3y-2)/3=...
=>(50-3z)4=4z-3<=>200-12z=4z-3<=>16z=2...
=>z=203/16.thay vào dãy tỉ số ban đầu ta tìm được x=199/16,y=605/16
câu 2:
bạn chép sai đề bài rồi hay sao ấy
đề bài phải thế này mới đúng:cho đk như bạn.cmr:(a^3+b^3+c^3)/(b^3+c^3+d^3)=a/d
giải theo tỉ lệ thức là ra ngay đấy mà.Cố lên bạn nhé!
Ta co x+2/2=y+3/3=z+4/4 hay x+1=y+1=z+1 => x=y=z
Suy ra: 2x+y+z=11 hay 2x+x+x=11 => 4x=11 => x=11/4
Vay: x^2+y^2+z^2 = (11/4)^2+(11/4)^2+(11/4)^2 =121/16 . 3 = 363/16
Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{x-1}{2}=\frac{2\left(y-2\right)}{6}=\frac{3\left(x-3\right)}{12}\)
hay
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\) và \(x-2y+3z=-10\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}=\frac{x-1-2y-4+3z-9}{8}\)
\(=\frac{\left(x-2y+3z\right)-\left(9+1-4\right)}{8}=\frac{-10-6}{8}=-\frac{16}{8}=-2\)
\(\Leftrightarrow\begin{cases}x-1=-2.2=-4\Rightarrow x=-4+1=-3\\y-2=-2.3=-6\Rightarrow y=-6+2=-4\\z-3=-2.4=-8\Rightarrow z=-8+3=-5\end{cases}\)
Khi đó : \(x+y+z=\left(-3\right)+\left(-4\right)+\left(-5\right)=-12\)
cho các số z,y,z thỏa mãn :\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x+3y-z=95. khi đó x+y+z=