K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 9 2018

Lời giải:

Không mất tổng quát, giả sử \(c=\max(a,b,c)\Rightarrow 6=a+b+c\leq 3c\Rightarrow c\geq 2\)

Ta có:

\(P=a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)=36-2(ab+bc+ac)\)

\(a,b,c\geq 1\Rightarrow (a-1)(b-1)\geq 0\)

\(\Rightarrow ab\geq a+b-1\)

\(\Rightarrow ab+bc+ac\geq a+b-1+bc+ac\)

\(\Rightarrow ab+bc+ac\geq 6-c-1+c(6-c)\)

\(\Rightarrow ab+bc+ac\geq 11-(c^2-5c+6)\)

\(\Rightarrow ab+bc+ac\geq 11-(c-2)(c-3)\)

\(3\geq c\geq 2\Rightarrow (c-2)(c-3)\leq 0\Rightarrow 11-(c-2)(c-3)\geq 11\)

Do đó: \(ab+bc+ac\geq 11\Rightarrow P=36-2(ab+bc+ac)\leq 14\)

Vậy \(P_{\max}=14\Leftrightarrow (a,b,c)=(3,2,1)\) và các hoán vị.

26 tháng 9 2018

thks nhiều

6 tháng 5 2021

Ta có \(\sqrt{1+a^2}+\sqrt{2a}\le\sqrt{2\left(1+a^2+2a\right)}=\sqrt{2}\left(a+1\right)\).

Tương tự \(\sqrt{1+b^2}+\sqrt{2b}\le\sqrt{2}\left(b+1\right)\)\(\sqrt{1+c^2}+\sqrt{2c}\le\sqrt{2}\left(c+1\right)\).

Lại có \(\left(2-\sqrt{2}\right)\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\le\left(2-\sqrt{2}\right)\sqrt{3\left(a+b+c\right)}\le3\left(2-\sqrt{2}\right)\).

Do đó \(B\le\sqrt{2}\left(a+b+c+3\right)+3\left(2-\sqrt{2}\right)\le6\sqrt{2}+6-3\sqrt{2}=3\sqrt{2}+6\).

Dấu "=" xảy ra khi a = b = c = 1.

31 tháng 12 2016

Bài 1: 4

Bài 2: 114 (hình như vậy) 

(ko biết trình bày ah)

31 tháng 12 2016

Bạn cố nhớ cách trình bày giúp mk dc k

25 tháng 5 2015

Áp dụng BĐT Bu nhi a có:

(a+b+c)2 \(\le\) (a2 + b2 +c2)(12 +12 +12) = 22.3 = 66

=> a + b + c \(\le\) \(\sqrt{66}\)

Vậy max(a+b+c) = \(\sqrt{66}\) khi a = b = c

mà a2 + b2 +c = 22 =>a2 =  b2  = c2 = \(\frac{22}{3}\)

=> a = b = c = \(\sqrt{\frac{22}{3}}\)

16 tháng 10 2015

hoàng thanh ko biết j mak cx nói

3 tháng 4 2022

Bài 3:

\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)

\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)

 

3 tháng 4 2022

-Tham khảo:

undefined

1 tháng 8 2017

\(Q=a^2\left(b-c\right)+b^2\left(c-b\right)+c^2\left(1-c\right)\)

\(\le b^2\left(c-b\right)+c^2\left(1-c\right)\)

\(=4.\frac{b}{2}.\frac{b}{2}.\left(c-b\right)+c^2\left(1-c\right)\)

\(\le\frac{4.\left(\frac{b}{2}+\frac{b}{2}+c-b\right)^3}{27}+c^2\left(1-c\right)\)

\(\le\frac{4.c^3}{27}+c^2\left(1-c\right)\)

\(=c^2\left(1-\frac{23c}{27}\right)\)

\(=\frac{23c}{54}.\frac{23c}{54}.\left(1-\frac{23c}{27}\right).\frac{2916}{529}\)

\(\le\frac{2916}{529}.\frac{\left(\frac{23c}{54}+\frac{23c}{54}+1-\frac{23c}{27}\right)^3}{27}=\frac{108}{529}\)

Dấu = xảy ra khi \(a=0;b=\frac{12}{23};c=\frac{18}{23}\)

1 tháng 8 2017

CÁC KIẾN THỨC CẦN LƯU Ý A ≥ B ⇔ A − B ≥ 0 1/Định nghĩa  A ≤ B ⇔ A − B ≤ 0 2/Tính chất + A>B ⇔ B < A + A>B và B >C ⇔ A > C + A>B ⇒ A+C >B + C + A>B và C > D ⇒ A+C > B + D + A>B và C > 0 ⇒ A.C > B.C + A>B và C < 0 ⇒ A.C < B.C + 0 < A < B và 0 < C <D ⇒ 0 < A.C < B.D + A > B > 0 ⇒ A n > B n ∀n + A > B ⇒ A n > B n với n lẻ + A > B ⇒ A n > B n với n chẵn + m > n > 0 và A > 1 ⇒ A m > A n + m > n > 0 và 0 <A < 1 ⇒ A m < A n 1 1 +A < B và A.B > 0 ⇒ > A B 3/Một số hằng bất đẳng thức + A 2 ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 ) + An ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 ) + A ≥ 0 với ∀A (dấu = xảy ra khi A = 0 ) + -A <A= A + A + B ≥ A + B ( dấu = xảy ra khi A.B > 0) + A − B ≤ A − B ( dấu = xảy ra khi A.B < 0)Sưu tầm và tuyển chọn 1