K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AB<AC<BC

nên góc C<góc B<góc A

b: góc C=180-50-60=70 độ

Xét ΔABC có góc A<góc B<góc C

nên BC<AC<AB

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(a = BC = 20;\;b = AC = 15;\;c = AB = 12.\)

a) Áp dụng định lí cosin trong tam giác ABC, ta có:

 \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\;\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\)

\( \Rightarrow \cos A = \frac{{{{15}^2} + {{12}^2} - {{20}^2}}}{{2.15.12}};\;\cos B = \frac{{{{20}^2} + {{12}^2} - {{15}^2}}}{{2.20.12}}\)

\( \Rightarrow \cos A =  - \frac{{31}}{{360}};\;\cos B = \frac{{319}}{{480}}\)

\( \Rightarrow \widehat A = 94,{9^o};\;\widehat B = 48,{3^o}\)

\( \Rightarrow \widehat C = {180^o} - \left( {94,{9^o} + 48,{3^o}} \right) = 36,{8^o}\)

b)

Diện tích tam giác ABC là: \(S = \frac{1}{2}.bc.\sin A = \frac{1}{2}.15.12.\sin 94,{9^o} \approx 89,7.\)

a: \(AH=\sqrt{15^2-9^2}=12\left(cm\right)\)

CH=16(cm)

BC=25(cm)

AC=20(cm)

4 tháng 12 2016

Mình làm câu A thôi nha:

Xét tam giác ADB và tam giác ADC

Ta có:AB=AC (gt)

góc A1=A2 (gt)

AD là cạnh chung

=>tam giác ADB=tam giác ADC (cạnh-góc-cạnh)

hehehehehehe

18 tháng 12 2016

 

Xét AHD và AKD lần lượt vuông tại H,K có:

AD: cạnh chung

HAD = KAD ( vì AD là tia phân giác góc A)

Suy ra AHD=AKD(ch-gn)

Do đó AH=AK ( 2 cạnh tương ứng)

24 tháng 12 2021

Tổng các góc trong tam giác là 180 độ

Gọi số đo các góc lần lượt là x,y,z

Ta có:

\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{180}{6}=30\)

=> x=90; y=60; z=30

Tam giác ABC vuông tại A

D trung điểm AC; DM vuông góc BC => M trung điểm BC

=> AM trung tuyến thuộc cạnh huyền

=> Góc ABM = góc BAM = 60 độ

=> Tam giác ABM đều