Cho \(x+y+z=0\) và \(x^2+y^2+z^2=14\)
Tính \(A=x^4+y^4+z^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/68409793765.html
Bạn tham khảo ở đây.
a)Ta có: ab+ac+bc=-7 (ab+ac+bc)^2=49
nên
(ab)^2+(bc)^2+(ac)^2=49
nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98
b) (x^2+y^2+z^2)/(a^2+b^2+c^2)=
=x^2/a^2+y^2/b^2+z^2/c^2 <=>
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+
+(b^2/c^2)z^2+(c^2/a^2)x^2+
+(c^2/b^2)y^2+z^2 <=>
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+
+[(a^2+b^2)/c^2]z^2 = 0 (*)
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2;
và C=[(a^2+b^2)/c^2]z^2
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm
Từ (*) ta có A+B+C=0
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0
Vậy x^2011+y^2011+z^2011=0
Và x^2008+y^2008+z^2008=0.
Lời giải cho bài của bạn ở đây nhé! http://olm.vn/hoi-dap/question/479780.html
\(x+y+z=0\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)\(=0\)
\(\Rightarrow2xy+2yz+2xz=-9\)
\(\Rightarrow xy+yz+xz=-\frac{9}{2}\)
\(\Rightarrow x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz=\left(-\frac{9}{2}\right)^2=\frac{81}{4}\)\(\)
\(\Rightarrow x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)=\frac{81}{4}\)
\(\Rightarrow x^2y^2+y^2z^2+x^2z^2=\frac{81}{4}\)
\(\left(x^2+y^2+z^2\right)^2=9^2=81\)
\(\Rightarrow P=x^4+y^4+z^4=81-2\left(x^2y^2+y^2z^2+x^2z^2\right)=81-2.\frac{81}{4}=\frac{81}{2}\)
a) \(\left|1-x\right|+\left|y-\frac{2}{3}\right|+\left|x+z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}1-x=0\\y-\frac{2}{3}=0\\x+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1-0=1\\y=0+\frac{2}{3}=\frac{2}{3}\\z=0-1=-1\end{cases}}}\)
Vậy \(x=1,y=\frac{2}{3},z=-1\)
b) \(\left|\frac{1}{4}-x\right|+\left|x+y+z\right|+\left|\frac{2}{3}+y\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{4}-x=0\\x+y+z=0\\\frac{2}{3}+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}-0=\frac{1}{4}\\x+y+z=0\\y=0+\frac{2}{3}=\frac{2}{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\z=0-\frac{1}{4}-\frac{2}{3}=\frac{-11}{12}\\y=\frac{2}{3}\end{cases}}}\)
Vậy \(x=\frac{1}{4},y=\frac{-11}{12},z=\frac{2}{3}\)
mọi người có biết khi âm điểm thì phải làm thế nào để hết âm điểm ko
\(x+y+z=0< =>x+y=-z=>\left(x+y\right)^2=\left(-z\right)^2.\)
\(< =>x^2+2xy+y^2=z^2< =>x^2+y^2-z^2=-2xy\)
\(< =>\left(x^2+y^2-z^2\right)=\left(-2xy\right)^2\)
\(< =>x^4+y^4+z^4+2x^2y^2-2x^2z^2-2y^2z^2=4x^2y^2\)
\(< =>x^4+y^4+z^4=2x^2y^2+2y^2z^2+2x^2z^2\)
\(< =>2\left(x^4+y^4+z^4\right)=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2=\left(x^2+y^2+z^2\right)^2.\)
\(< =>x^4+y^4+z^4=\frac{\left(x^2+y^2+z^2\right)^2}{2}=\frac{a^4}{2}\)
Vậy \(x^4+y^4+z^4=\frac{a^4}{2}\)
Ta có : \(x+y+z=0\)
\(\Leftrightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow14+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow2\left(xy+yz+xz\right)=-14\)
\(\Leftrightarrow xy+yz+xz=-7\)
\(\Leftrightarrow\left(xy+yz+xz\right)^2=49\)
\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2+2\left(xy^2z+2x^2yz+2xyz^2\right)=49\)
\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)=49\)
\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2+2xyz.0=49\)
\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2=49\)
Lại có : \(x^2+y^2+z^2=14\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=196\)
\(\Leftrightarrow x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+x^2z^2\right)=196\)
\(\Leftrightarrow x^4+y^4+z^4+2.49=196\)
\(\Leftrightarrow x^4+y^4+z^4=196-98\)
\(\Leftrightarrow A=98\)
Vậy \(A=98\)