Tìm x,y biết:
(x+1,5)^2+(y-2,5)^2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có: \(\left|x-1,5\right|\ge0;\left|x-2,5\right|\ge0\forall x\)
Mà theo đề bài: |x - 1,5| + |x - 2,5| = 0
\(\Rightarrow\begin{cases}\left|x-1,5\right|=0\\\left|x-2,5\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x-1,5=0\\x-2,5=0\end{cases}\)\(\Rightarrow\begin{cases}x=1,5\\x=2,5\end{cases}\), vô lý vì x không thể cùng lúc nhận 2 giá trị khác nhau
Vậy không tồn tại giá trị của x thỏa mãn đề bài
b) Có: \(\left|x-y\right|\ge0;\left|y-1,5\right|\ge0\forall x;y\)
Mà theo đề bài: |x - y| + |y - 1,5| = 0
\(\Rightarrow\begin{cases}\left|x-y\right|=0\\\left|y-1,5\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x-y=0\\y-1,5=0\end{cases}\)\(\Rightarrow\begin{cases}x=y\\y=1,5\end{cases}\)
Vậy x = y = 1,5
a: =>|x-1/2|=2x+1
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{2}\\\left(2x+1\right)^2-\left(x-\dfrac{1}{2}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{2}\\\left(2x+1-x+\dfrac{1}{2}\right)\left(2x+1+x-\dfrac{1}{2}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{2}\\\left(x+\dfrac{3}{2}\right)\left(3x-\dfrac{1}{2}\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{6}\)
b: =>\(\left\{{}\begin{matrix}x-1.3=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1.3\\y=\dfrac{1}{2}\end{matrix}\right.\)
a . ( x - 1/2 ) - 2 x = 1
=> x - 1/2 = 1 hoặc 2x =0
=> x = 3/2 hoặc x = 0
b .( x -1/3 ) + ( 2y -1 ) = 0
=> x - 1/3 = 0 hoặc 2y - 1 = 0
=> x = 1/3 hoặc 2y = 1
=> x = 1/3 hoặc y = 1/2
c. ( x - 1,5 ) + ( y - 2,5 ) + ( x + y + z ) nhỏ hơn hoặc bằng 0
=> x - 1,5 = 0 hoặc y - 2,5 = 0 hoặc x + y + z = 0
=> x= 1,5 hoặc y= 2,5 hoặc x + y +z = 0
=> x = 1,5 hoặc y = 2,5 hoặc 1,5 + 2,5 + z = 0
=> x = 1,5 hoặc y = 2,5 hoặc z = 4 , - 4
Sau khi tính giá trị của mỗi giá trị theo các giá trị của x đã cho ta được bảng sau:
x | -2,5 | -2,25 | -1,5 | -1 | 0 | 1 | 1,5 | 2,25 | 2,5 |
y = 0,5x | -1,25 | -1,125 | -0,75 | -0,5 | 0 | 0,5 | 0,75 | 1,125 | 1,25 |
y = 0,5x + 2 | 0,75 | 0,875 | 1,25 | 1,5 | 2 | 2,5 | 2,75 | 3,125 | 3,25 |
(x+1,5)2+(y-2,5)2=0
=>\(\left\{{}\begin{matrix}\left(x+1,5\right)^2=0\\\left(y-2,5\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+1,5=0\\y-2,5=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-1,5\\y=2,5\end{matrix}\right.\)
Vậy x=-1,5; y=2,5
Ta thấy (x + 1.5)2 \(\ge\) 0 ; (y - 2.5)2 \(\ge\) 0
Vậy để (x + 1.5)2 + (y - 2.5)2 = 0 thì
(x + 1.5)2 = 0 ; (y - 2.5)2 = 0
=> x + 1.5 = 0 ; y - 2.5 = 0
=> x = -1.5 ; y = 2.5
a) \(\left(x-1,3\right)^2=9\Leftrightarrow\left[{}\begin{matrix}x-1,3=3\\x-1,3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4,3\\x=-1,7\end{matrix}\right.\)
b) 24-x = 32
⇔ 24-x = 25
⇔ 4-x=5
⇔ x=-1
c) (x+1,5)2+(y-2,5)10=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+1,5=0\\y-2,5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1,5\\y=2,5\end{matrix}\right.\)
\(a,\left(x-1,3\right)^2=9\\ \Leftrightarrow\left(x-1,3+9\right)\left(x-1,3-9\right)=0\\ \Leftrightarrow\left(x-7,7\right)\left(x-10,3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7,7=\dfrac{77}{10}\\x=10,3=\dfrac{103}{10}\end{matrix}\right.\)
\(b,2^{4-x}=32=2^5\\ \Leftrightarrow4-x=5\\ \Leftrightarrow x=-1\)
\(c,\left(x+1,5\right)^2+\left(y-2,5\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}x+1,5=0\\y-2,5=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1,5=-\dfrac{3}{2}\\y=2,5=\dfrac{5}{2}\end{matrix}\right.\)
Vì: \(\left(x+1,5\right)^2+\left(y-2,5\right)^2\ge0\forall x,y\)
Dấu = xảy ra khi: \(\hept{\begin{cases}\left(x+1,5\right)^2=0\\\left(y-2,5\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1,5\\y=2,5\end{cases}}}\)
=.= hok tốt!!