K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)

hay \(n\in\left\{0;1;-1\right\}\)

Gọi d=ƯCLN(3n+1;4n+1)

\(\Rightarrow\)3n+1 \(⋮\)d và 4n+1\(⋮\)d

\(\Rightarrow\)(3n+1).4\(⋮\)d và (4n+1).3\(⋮\)d

hay 12n+4\(⋮\)d và 12n+3 \(⋮\)d

\(\Rightarrow\)\([\)(12n+4)-(12n+3)\(]\)\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)1=d

Vậy \(\frac{3n+1}{4n+1}\)là phân số tối giản.

Phần còn lại làm tương tự nha bạn.

17 tháng 11 2017

ta lập biểu thưc vfhgjhkjggj

fhfhgjh;hjghg-gjgjh=ggrutrutiyỳjkjfgf[ỵt[tjrgtgfugeidgưeuđewvd76e

a.b.c.d.e.f.g=100

fsjshssiusksuusmsumsú,súksúksúlsusúkúlsú=shsjsk-sssskảy,hehhhugeywhoewugrfteocjnr;djfctta  

ta lập luôn 1 biểu thức ậmkrgkfhrhfytf7eỷ6ềwỷwt9fuềe9re6dteudfudỷ4hd94

11 tháng 3 2017

1)

gọi ƯC(3n-2,4n-3) là d

=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1;-1\)

=>ƯC(3n-2,4n-3)={1;-1}

=>\(\frac{3n-2}{4n-3}\)là p/số tối giản

vậy...

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Câu 1:

Gọi $d=ƯC(n, n+1)$

$\Rightarrow n\vdots d; n+1\vdots d$

$\Rightarrow (n+1)-n\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$ 

Vậy $ƯC(n, n+1)=1$

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Câu 2:

Gọi $d=ƯC(5n+6, 8n+7)$

$\Rightarrow 5n+6\vdots d; 8n+7\vdots d$

$\Rightarrow 8(5n+6)-5(8n+7)\vdots d$

$\Rigtharrow 13\vdots d$

$\Rightarrow d\left\{1; 13\right\}$

 

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)

17 tháng 11 2017

Vì 396 : a dư 30 nên a > 30

Theo bài ra ta có : 

396 chia a dư 30 

=> ( 396 - 30 ) \(⋮\)a => 366  \(⋮\)a

Lại có : 473 chia a dư 23

=> ( 473 - 23 ) \(⋮\)a => 450 \(⋮\)a

Từ (1) và (2) => a \(\in\)ƯC( 366;450)

Ta có : 366 = 2 .3 . 61

             450 = 2 . 32 . 52

Khi đó ƯCLN( 366;450 ) = 2 . 3 = 6

=> ƯC( 366;450 ) = Ư(6) = { 1 ;2 ; 3 ; 6 }

Vậy a \(\in\){1;2;3;6}

19 tháng 12 2023

Em con quá non

2 tháng 9 2015

Gọi UCLN(3n+2,2n+1) = d

=> 2.(3n+1) = 3n + 2 chia hết cho d

=> 6n + 4 chia hết cho d

=> 2n + 1 chia hết cho d

=> 3(2n+1) = 6n + 3 chia hết cho d

Mà UCLN(6n+4,6n+3) = 1

Vậy UCLN(2n+2,2n+1) = 1

2 tháng 9 2015

Gọi ƯCLN(3n+2; 2n+1) là d. Ta có:

3n+2 chia hết cho d => 6n+4 chia hết cho d

2n+1 chia hết cho d => 6n+3 chia hết cho d

=> 6n+4-(6n+3) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

=> d = 1

=> ƯCLN(3n+2; 2n+1) = 1