K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

a) x= 10; y = 25

b) x + 2 y + 10 = 1 5  => ( x = 2).5 = ( y = 10).1=> 5.x + 10 = y + 10

=> 5.x = y mà y – 3.x = 2

Nên  x = 1; y = 5

c) x = 20 ; y = 25

14 tháng 4 2017

a)  x + y = 10 ⇒ y = 10 − x ⇒ 3 x = 2 ( 10 − x ) ⇒ x = 4 ⇒ y = 6

b)  y − x = − 4 ⇒ y = x − 4 ⇒ x − 2 x − 4 + 3 = 8 12 ⇒ x − 2 x − 1 = 8 12 ⇒ 12 x − 24 = 8 x − 8 ⇒ x = 4 ⇒ y = 0

c)  x + 2 y = 12 ⇒ x = 12 − 2 y ⇒ 12 − 2 y 2 = y 5 ⇒ 60 − 10 y = 2 y ⇒ y = 5 ⇒ x = 2

23 tháng 11 2023

a) Để tính giá trị của biểu thức x^4 + y^4, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 Từ đó, ta có thể tính giá trị của biểu thức x^4 + y^4 theo a và b: x^4 + y^4 = (a^2 - 2b)^2 - 2(a - 2b)b b) Tương tự, để tính giá trị của biểu thức x^5 + y^5, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^5 + y^5 = (x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4) Từ đó, ta có thể tính giá trị của biểu thức x^5 + y^5 theo a và b: x^5 + y^5 = (a)(a^4 - a^3b + a^2b^2 - ab^3 + b^4)

23 tháng 11 2023

ccc

3 tháng 8 2023

\(\text{a) x^2 + y^2 = (x+y)^2 - 2xy = a^2 - 2b}\)

\(\text{b) x^3 + y^3 = (x+y)^3 - 3xy(x+y) = a^3 - 3ab}\)

\(\text{c) x^4 + y^4 = (x^2+y^2)^2 - 2x^2y^2 = (a^2-2b)^2 - 2b^2 = a^4 - 4a^2b + 2b^2}\)

\(\text{d) x^5 + y^5 = (x^3+y^3)(x^2+y^2) - x^2y^2(x+y) = a^5 - 5a^3b + 5ab^2}\)

 

14 tháng 10 2016

Vì x:y:z=2:3:4

=>x/2=y/3=z/4=2z/8

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

x/2=y/3=z/4=x+y-2z/2+3-8=3/-3=-1

Do đó: x/2=-1=>x=-2

            y/3=-1=>y=-3

            z/4=-1=>z=-4

30 tháng 11 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2z}{8}\)

x+y-2z=3

áp dụng ta có: 

\(\frac{x+y-2z}{2+3-8}=\frac{3}{-3}=-1\)

suy ra: 

\(\frac{x}{2}=-1...x=-2\) tương tự với y và z.

12 tháng 12 2018

THEO TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU TA CÓ:

\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

\(\Rightarrow\hept{\begin{cases}x=4\cdot2=8\\y=3\cdot2=6\\z=9\cdot2=18\end{cases}}\)

12 tháng 12 2018

từ \(x:y:z=2:3:4\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

\(=\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}\)

\(=\frac{x+3y-2z}{2+9-8}=\frac{3}{3}=1\)

\(\Rightarrow\hept{\begin{cases}x=2\cdot1=2\\y=3\cdot1=3\\z=4\cdot1=4\end{cases}}\)