K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

Ta có: x(x+1)(x+2)(x+3)+5

= x(x+3)(x+1)(x+2)+5 = (x2 +3x)(x2 +3x +2)+5 = (x2 +3x +1 -1)(x2 +3x +1 +1) +5

= (x2 +3x +1)2 -1 +5 = (x2 +3x +1)2 +4

Vì (x2 +3x +1)2 ≥0 (∀x) nên (x2 +3x +1) +4 ≥4

⇒ C ≥ √4 ⇒ C ≥ 2

⇒ C đạt GTNN bằng 2 ⇔ (x2 +3x +1)2 =0

Bạn làm tiếp nha......

23 tháng 9 2018

Phan Văn KhởiPhùng Khánh LinNguyễn Thị Ngọc ThơhHoàng Ngọc Anh giup mk voi

3 câu này bạn áp dụng cái này nhé.

`a^2 >=0 forall a`.

`|a| >=0 forall a`.

`1/a` xác định `<=> a ne 0`.

a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y

Dấu = xảy ra khi x=-30 và y=4

b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y

Dấu = xảy ra khi x=-1/3 và y=1/6

c: -x^2-x+1=-(x^2+x-1)

=-(x^2+x+1/4-5/4)

=-(x+1/2)^2+5/4<=5/4

=>R>=3:5/4=12/5

Dấu = xảy ra khi x=-1/2

1 tháng 12 2019

Đặt \(F=\sqrt{x\left(x+1\right)\left(x+2\right)\left(x+3\right)+5}\)

\(=\sqrt{\left(x^2+3x\right)\left(x^2+3x+2\right)+5}\left(#\right)\)

# đặt \(t=x^2+3x\) ta có

\(\left(#\right)=\sqrt{t\cdot\left(t+2\right)+5}=\sqrt{\left(t+1\right)^2+4}\)

(#) đạt giá trị nhỏ nhất của F=2 khi t+1=0 hay t=-1

Vậy \(F_{min}=2\)  khi \(x=\frac{-3\pm\sqrt{5}}{2}\)

12 tháng 1 2021

c) \(h\left(x\right)=\left(x+1\right)^2+\left(\dfrac{x^2+2x+2}{x+1}\right)^2=\left(x+1\right)^2+\left(x+1+\dfrac{1}{x+1}\right)^2=2\left(x+1\right)^2+\dfrac{1}{\left(x+1\right)^2}+2\ge_{AM-GM}2\sqrt{2}+2\).

Đẳng thức xảy ra khi \(2\left(x+1\right)^2=\dfrac{1}{\left(x+1\right)^2}\Leftrightarrow x=\pm\sqrt{\dfrac{1}{2}}-1\).

12 tháng 1 2021

b) \(g\left(x\right)=\dfrac{\left(x+2\right)\left(x+3\right)}{x}=\dfrac{x^2+5x+6}{x}=\left(x+\dfrac{6}{x}\right)+5\ge_{AM-GM}2\sqrt{6}+5\).

Đẳng thức xảy ra khi x = \(\sqrt{6}\).

a: Ta có: \(\sqrt{x}\left(\sqrt{x}-3\right)-5\left(\sqrt{x}+3\right)\)

\(=x-3\sqrt{x}-5\sqrt{x}-15\)

\(=x-8\sqrt{x}-15\)

b: Ta có: \(3\left(\sqrt{x}+2\right)+\left(\sqrt{x}+3\right)\left(2-\sqrt{x}\right)\)

\(=3\sqrt{x}+6+2\sqrt{x}-x+6-3\sqrt{x}\)

\(=-x+2\sqrt{x}+12\)

c: Ta có: \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-5\left(\sqrt{x}-1\right)\)

\(=x-9-5\sqrt{x}+5\)

\(=x-5\sqrt{x}-4\)

d: Ta có: \(3\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=3\sqrt{x}-6-x+1\)

\(=-x+3\sqrt{x}-5\)

C=|x-2021|+|1-x|>=|x-2021+1-x|=2020

Dấu = xảy ra khi 1<=x<=2021

27 tháng 6 2023

bạn ơi, tìm gtnn của biểu thức ạ ;-;

17 tháng 12 2022

C=|2x-3/5|+4/3>=4/3

Dấu = xảy ra khi x=3/10

D=|x-3|+|-x-2|>=|x-3-x-2|=5

Dấu = xảy ra khi -2<=x<=3

11 tháng 6 2021

\(A=\)\(\sqrt{x+2\left(1+\sqrt{x+1}\right)}+\sqrt{x+2\left(1-\sqrt{x+1}\right)}\) (đk: \(x\ge-1\))

\(=\sqrt{\left(x+1\right)+2\sqrt{x+1}+1}+\sqrt{\left(x+1\right)-2\sqrt{x+1}+1}\)

\(=\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-1\right)^2}\)

\(=\sqrt{x+1}+1+\left|\sqrt{x+1}-1\right|\)

\(=\left[{}\begin{matrix}\sqrt{x+1}+1+\sqrt{x+1}-1;\sqrt{x+1}\ge1\\\sqrt{x+1}+1-\left(\sqrt{x+1}-1\right);\sqrt{x+1}< 1\end{matrix}\right.\)

\(=\left[{}\begin{matrix}2\sqrt{x+1};x\ge0\\2;-1\le x< 0\end{matrix}\right.\)

Có \(2\sqrt{x+1}\ge2\) tại \(x\ge0\) 

\(\Rightarrow\min\limits_{x\ge0}A=2\)

Dấu = xảy ra <=> x=0 mà tại \(-1\le x< 0\) thì A=2

Vậy giá trị nhỏ nhất của biểu thức là 2 tại x=0 hoặc \(-1\le x< 0\)

(Ủa đề zì kì)

\(ĐKXĐ:x\ge-1\)

Đặt \(A=\sqrt{x+2\left(1+\sqrt{x+1}\right)}+\sqrt{x+2\left(1-\sqrt{x+1}\right)}\)

\(=\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-2\sqrt{x+1}+1}\)

\(=\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-1\right)^2}\)

\(=\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-1\right|\)

\(=\left|\sqrt{x+1}+1\right|+\left|1-\sqrt{x+1}\right|\)

\(\ge\left|\sqrt{x+1}+1+1-\sqrt{x+1}\right|=2\)

Dấu "=" xảy ra khi \(\left(\sqrt{x+1}+1\right)\left(1-\sqrt{x+1}\right)\ge0\)

\(\Leftrightarrow1-\sqrt{x+1}\ge0\)

\(\Leftrightarrow\sqrt{x+1}\le1\)

\(\Leftrightarrow x\le0\). Mà \(x\ge-1\) Nên \(-1\le x\le0\)

Vậy Min \(A=2\) khi \(-1\le x\le0\)