1. Xác định hàm số bậc nhất y=ax + b (d), biết (d) có hệ số góc là -3 và (d) đi qua điểm A(1;-1). 2. Vẽ đồ thị hàm số tìm được ở trên và tính khoảng cách OH từ gốc toạ độ O đến đường thẳng đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hệ số góc bằng 2
=> a=2
Đồ thị hàm số đi qua A (1; 2)
=> 2=a.1+b<=> 2=2.1+b <=> b=0
Vậy hàm số: y=2x
b)
+) Đồ thị hàm số đi qua điểm A (-2; 2)
=> 2=a. (-2)+b <=> -2a+b=2 (1)
+) Đồ thị hàm số cắt đường thẳng (d) y=-2x+4 tại điểm có hoành độ bằng 3
Gọi điểm đó là: B(3; y)
(d) qua B(3; y) => y=-2.3+4=-2
=> B(3; -2)
đồ thị hàm số qua B => -2=a.3+b <=> 3a+b=-2 (2)
Từ (1); (2) ta có:a=-4/5, b=2/5
Vậy: y=-4/5 x+2/5
a: Thay x=-2 và y=6 vào (d), ta được:
-2a+4=6
=>-2a=2
=>a=2/-2=-1
b: a=-1 nên \(y=-x+4\)
a: Vì hệ số góc là 2 nên a=2
Thay x=0 và y=2 vào y=2x+b, ta được:
b+0=2
hay b=2
Hàm số y = ax + 3 là hàm số bậc nhất nên a ≠ 0
Đồ thị của hàm số đi qua điểm A(2; 6) nên:
Hàm số y = ax + 3 là hàm số bậc nhất nên a ≠ 0
a) Đồ thị của hàm số đi qua điểm A(2; 6) nên:
b) Vẽ đồ thị:
- Cho x = 0 thì y = 3 ta được B(0; 3).
Nối A, B ta được đồ thị hàm số
a) Vì đồ thị hàm số y=ax+b vuông góc với đồ thị hàm số \(y=\dfrac{1}{3}x-1\) nên \(a\cdot\dfrac{1}{3}=-1\)
\(\Leftrightarrow a=-1:\dfrac{1}{3}=-1\cdot\dfrac{3}{1}=-3\)
Vậy: Hàm số có dạng y=-3x+b
Vì đồ thị hàm số y=-3x+b đi qua điểm A(1;2) nên
Thay x=1 và y=2 vào hàm số y=-3x+b, ta được:
\(-3\cdot1+b=2\)
\(\Leftrightarrow b-3=2\)
hay b=5
Vậy: Hàm số có dạng y=-3x+5
a: Vì (d)//(d') nên \(\left\{{}\begin{matrix}a=-3\\b\ne-\dfrac{2}{3}\end{matrix}\right.\)
Vậy: (d): \(y=-3x+b\)
Thay x=-2 và y=-4 vào (d), ta được:
\(b-3\cdot\left(-2\right)=-4\)
=>b+6=-4
=>b=-10
Vậy: (d): y=-3x-10
b: Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\2x-2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\2x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
(d) có hệ số góc là -3 nên a=-3
Vậy: (d): y=-3x+b
Thay x=1 và y=0 vào (d), ta được:
\(b-3\cdot1=0\)
=>b-3=0
=>b=3
Vậy: (d): y=-3x+3