K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2018

x=5 và 6

k nha

21 tháng 10 2018

\(x=5\)

\(x=6\)

học tốt

27 tháng 8 2021

`sqrt{4x+20}-3sqrt{5+x}+4/3sqrt{9x+15}=6(x>=-5)`

`<=>sqrt{4(x+5)}-3sqrt{x+5}+4/3sqrt{9(x+5)}=6`

`<=>2sqrt{x+5}-3sqrt{x+5}+4sqrt{x+5}=6`

`<=>3sqrt{x+5}=6`

`<=>sqrt{x+5}=2`

`<=>x+5=4`

`<=>x=-1(tm)`

Vậy `x=-1`

24 tháng 2 2023

Đề

`<=> (x-5)^15 - (x-5)^5 = 0`

`<=> (x-5)^5 . ((x-5)^10 - 1) = 0`

`<=> (x-5)^5 = 0` hoặc `(x-5)^10 - 1 = 0`

`<=> x-5 = 0` hoặc `(x-5)^10 = 1`

`<=> x = 5` hoặc `x-5 = 1` hoặc `x - 5 = -1`

`<=> x = 5` hoặc `x = 6` hoặc `x = 4` (ko t/m)

Vậy `x = 5` hoặc `x = 6`

 

24 tháng 2 2023

\(\left(x-5\right)^5=\left(x-5\right)^{15}\\ \Rightarrow\left(x-5\right)^5-\left(x-5\right)^{15}=0\\ \Rightarrow\left(x-5\right)^5\left[1-\left(x-5\right)^{10}\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(x-5\right)^5=0\\1-\left(x-5\right)^{10}=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^{10}=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x-5=1\\x-5=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\left(T/m\right)\\x=6\left(T/m\right)\\x=-4\left(L\right)\end{matrix}\right.\)

Câu 3: 

a: \(=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)

b: \(=\left(\sqrt{x}-\sqrt{y}\right)^2\)

c: \(=\sqrt{x}\left(\sqrt{y}+2\right)-3\left(\sqrt{y}+2\right)\)

\(=\left(\sqrt{y}+2\right)\left(\sqrt{x}-3\right)\)

NV
18 tháng 3 2021

ĐKXĐ: \(-2\le x\le3\)

\(\dfrac{\sqrt{-x^2+x+6}}{2x+5}-\dfrac{\sqrt{-x^2+x+6}}{x-4}\ge0\)

\(\Leftrightarrow\sqrt{-x^2+x+6}\left(\dfrac{1}{2x+5}-\dfrac{1}{x-4}\right)\ge0\)

\(\Leftrightarrow\dfrac{\left(-x-9\right)\sqrt{x^2+x+6}}{\left(2x+5\right)\left(x-4\right)}\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x^2+x+6=0\\\dfrac{-x-9}{\left(2x+5\right)\left(x-4\right)}\ge0\end{matrix}\right.\) \(\Leftrightarrow-2\le x\le3\)

Hoặc có thể biện luận như sau:

Ta có: \(\left\{{}\begin{matrix}2x+5>0;\forall x\in\left[-2;3\right]\\x-4< 0;\forall x\in\left[-2;3\right]\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{-x^2+x+6}}{2x+5}\ge0\\\dfrac{\sqrt{-x^2+x+6}}{x-4}\le0\end{matrix}\right.\) ; \(\forall x\in\left[-2;3\right]\)

Do đó nghiệm của BPT là \(-2\le x\le3\)

11 tháng 6 2021

`sqrt{x-2}-2>=sqrt{2x-5}-sqrt{x+1}`

`đk:x>=5/2`

`bpt<=>\sqrt{x-2}+\sqrt{x+1}>=\sqrt{2x-5}+2`

`<=>x-2+x+1+2\sqrt{(x-2)(x+1)}>=2x-5+4+4\sqrt{2x-5}`

`<=>2x-1+2\sqrt{(x-2)(x+1)}>=2x-1+4\sqrt{2x-5}`

`<=>2\sqrt{(x-2)(x+1)}>=4\sqrt{2x-5}`

`<=>sqrt{x^2-x-2}>=2sqrt{2x-5}`

`<=>x^2-x-2>=4(2x-5)`

`<=>x^2-x-2>=8x-20`

`<=>x^2-9x+18>=0`

`<=>(x-3)(x-6)>=0`

`<=>` \(\left[ \begin{array}{l}x \ge 6\\x \le 3\end{array} \right.\) 

Kết hợp đkxđ:

`=>` \(\left[ \begin{array}{l}x \ge 6\\\dfrac52 \le x \le 3\end{array} \right.\) 

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

A={5;6;7;8;...}

B={0;1;2;3;4;5}

Ta có: \(5,8,9 \in A\)

          \(3,5 \in B\)

1 tháng 10 2023

Liệt kê:

\(A=\left\{5;6;7;8;9;...\right\}\)

\(B=\left\{0;1;2;3;4;5\right\}\)

Vậy:

\(3\in B\)

\(\left\{{}\begin{matrix}5\in A\\5\in B\end{matrix}\right.\)

\(8\in A\)

\(9\in A\)