cho tam giác ABC ,đương cao AH. Biết AB.AC=BH.AH.
CM: AB2=BC.HB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét ΔHBA vàΔABC,có:
∠AHB=∠CAB(=90)
∠ABC:chung
⇒ΔHBA ~ΔABC(g-g)
✳Xét ΔHAC vàΔABC,có:
∠CHA=∠CAB(=90)
∠ACB:chung
⇒ΔHAC ~ΔABC(g-g)
a: Xét ΔHBA vuôngtại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng vơi ΔABC
Xét ΔHAC vuôngtại H và ΔABC vuông tại A có
góc C chung
=>ΔHAC đồng dạng với ΔABC
b: ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC=HA/AC
=>BA^2=BH*BC và BA*AC=AH*CB
Xet ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
c: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
HB=3^2/5=1,8cm
a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
Xét ΔHAC và ΔABC có
góc H=góc A
góc C chung
=>ΔHAC đồng dạngvới ΔABC
b: Xet ΔABC vuông tại A có AH vuông góc BC
nên AB*AC=AH*BC; AB^2=BH*BC; AC^2=CH*CB; HA^2=HB*HC; 1/AH^2=1/AB^2+1/AC^2
a) Xét ΔABD và ΔABC ta có:
\(\widehat{BDA}=\widehat{BAC}=90^0\)
\(\widehat{B}\) chung
→ΔABD ∼ ΔABC(g-g)(1)
Xét ΔDAC và ΔABC ta có:
\(\widehat{C}\) chung
\(\widehat{ADC}=\widehat{BAC}=90^0\)
→ΔDAC ∼ ΔABC(g-g)(2)
Từ (1) và (2)⇒ΔABD ∼ ΔDAC
b)Vì ΔABD ∼ ΔABC(1)
\(\rightarrow\dfrac{AB}{BD}=\dfrac{BC}{AB}\)
\(\rightarrow AB.AB=BD.BC\)
\(\Rightarrow AB^2=BD.BC\)
c)Vì Vì ΔABD ∼ ΔABC(1)
\(\rightarrow\dfrac{AB}{AD}=\dfrac{BC}{AC}\)
\(\Rightarrow AB.AC=AD.BC\)
a: Xét ΔABD vuông tại D và ΔCAD vuông tại D có
góc ABD=góc CAD
=>ΔABD đồng dạng với ΔCAD
b: ΔABC vuông tại A
mà AD là đường cao
nên AB^2=BD*BC
c: S ABC=1/2*AB*AC=1/2*AD*BC
=>AB*AC=AD*BC
a) Cm tamgiac ABC đồng dạng với tamgiac HBA(g.g)
=> AB/BC = BH/AB hay AB^2 = BH.HC
và cm tamgiac ABC đồng dạng với tamgiac HAC(g.g)
=> AC/BC = HC/AC hay AC^2 = CH.BH
a. Xét tg vuông ABC và tg vuông HBA có:
\(\widehat{ABH}\)chung
\(\Rightarrow\Delta ABC~\Delta HBA\)
\(\Rightarrow\frac{AB}{HB}=\frac{BC}{BA}\)
\(\Rightarrow AB^2=HB.BC\)
Cmtt:\(\Delta ABC~HAC\)
\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)
\(\Rightarrow AC^2=BC.HC\)
b. lát làm tiếp nhá
d) Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)
nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)
Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)
b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)
Do đó:ΔAHB\(\sim\)ΔCHA(g-g)
Suy ra: \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=HB\cdot HC\)
Theo Pytago tam giác ABC vuông tại A ta có
\(AC=\sqrt{BC^2-AB^2}=4cm\)
Ta có \(S_{ABC}=\dfrac{1}{2}.AH.BC;S_{ABC}=\dfrac{1}{2}.AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12}{5}\)cm
Ta có: \(\left\{{}\begin{matrix}AC^2=BC\cdot HC\\AB^2=BC\cdot HB\end{matrix}\right.\)
Cộng theo vế ta có:
\(AB^2+AC^2=BC\cdot HC+BC\cdot HB\)
\(\Rightarrow AB^2+AC^2=BC\cdot\left(HC+HB\right)\)
Mà \(HC+HB=BC\) nên:
\(AB^2+AC^2=BC\cdot BC\)
\(\Rightarrow AB^2+AC^2=BC^2\)
Vậy tam giác ABC vuông tại A
AC^2=BC*HC
AB^2=BC*HB
=>AC^2+AB^2=BC(HB+HC)=BC^2
=>ΔABC vuông tại A
a) Xét ΔABH và ΔABC ta có:
\(\widehat{AHB}=\widehat{BAC}\)
\(\widehat{B}\) chung
→ΔABH ∼ ΔABC(g-g)(1)
\(\rightarrow\dfrac{AB}{AH}=\dfrac{BC}{AC}\)
\(\Rightarrow AB.AC=AH.BC\)
b) Vì ΔABH ∼ ΔABC (cmt)
\(\rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\)
\(\rightarrow AC.AC=HC.BC\)
\(\Rightarrow AC^2=HC.BC\)
c) Xét ΔAHC và ΔABC ta có:
\(\widehat{C}\) chung
\(\widehat{AHC}=\widehat{BAC}=90^0\)
→ΔAHC ∼ ΔABC(g-g)(2)
Từ (1) và (2)→ΔABH ∼ ΔAHC
\(\rightarrow\dfrac{AH}{HB}=\dfrac{HC}{AH}\)
\(\rightarrow AH.AH=HB.HC\)
\(\Rightarrow AH^2=HB.HC\)