K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2017

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin Wrecking Ball nhận xét

17 tháng 11 2017

Đỗ Đức Đạt cop trên Yahoo

5 tháng 12

2) Ta có: 

xy2 + 2xy -243y +x = 0

 x( y2 + 2y + 1) -243y = 0

 x(y+1)2 = 243y

 x = 243y(y+1)2

Vì x thuộc Z nên 243y(y+1)2 thuộc Z, mà Ư CLN(y,y+1) = 1  243 chia hết (y+1)2 

 (y+1)2 thuộc {9; 81}

 y+1 thuộc {3; -3; 9; -9}

 y thuộc {2; -4; 8; -10}

 x thuộc {54; -108; 24; -30}

Vậy (x; y) = (54; 2) (24; 8) (-108;-4) (-30;-10)

 

Bài làm

\(xy^2+2xy+x=32y\)

\(\Leftrightarrow x\left(y^2+2y+1\right)=32y\)

\(\Leftrightarrow x=\frac{32y}{y^2+2y+1}\)

\(\Leftrightarrow\frac{32y}{\left(y+1\right)^2}\)

\(\Leftrightarrow x=\frac{32y}{y+1}-\frac{32y}{\left(y+1\right)^2}\)

Để x là số nguyên dương thì 

\(\left(y+1\right)^2\inƯ_{\left(32\right)}\)\(\left(y+1\right)^2\)là số chính phương 

\(\Rightarrow\left(y+1^2\right)=\left\{1;4;16\right\}\)

\(\Leftrightarrow y+1=\left\{1;2;4\right\}\)

\(\Leftrightarrow y=\left\{0;1;3\right\}\)

Vì y là số nguyên dương 

Nên: \(\hept{\begin{cases}y=1\Rightarrow x=8\\y=3\Rightarrow x=6\end{cases}}\)

Vậy   x = 8; y = 1

hoặc x = 6; y = 3

# Chúc bạn học tốt #

15 tháng 7 2019

Bạn có thể giải thích rõ dòng: 4 và 5 không. Mình thấy nó chưa được chính xác.

7 tháng 3 2017

CHO TEN ROI NOI

7 tháng 3 2017

ngọc anh ạ

13 tháng 1 2020

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

13 tháng 1 2020

câu a làm cách khác đi bạn

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)