K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)


 

16 tháng 9 2023

giải thích cho mik ạ

1 tháng 7 2019

Với n=1 ta có : \(1^3+3\cdot1^2+5\cdot1=9⋮3\)

Vậy khẳng định đúng với n=1.

Giả sử khẳng định đúng với n=m ta có \(\left(m^3+3m^2+5m\right)⋮3\)

Ta phải chứng minh khẳng định đúng với n=m+1 nghĩa là:

\(\left(\left(m+1\right)^3+3\left(m+1\right)^2+5\left(m+1\right)\right)⋮3\)

\(\Leftrightarrow\left(m^3+6m^2+14m+9\right)⋮3\)

\(\Leftrightarrow\left(\left(m^3+3m^2+5m\right)+\left(3m^2+9m+9\right)\right)⋮3\)

Mà \(\left(m^3+3m^2+5m\right)⋮3\)

\(3m^2+9m+9=3\left(m^2+3m+3\right)⋮3\)

Do đó khẳng định đúng với n=m+1.

Vậy khẳng định đúng \(\forall n\ge1,n\inℕ\)

1 tháng 7 2019

\(\forall n\ge1,n\in N\)

Ta có: \(n^3+3n^2+5n=\left(n^3+3n^2+2n\right)+3n=n\left(n+1\right)\left(n+2\right)+3n\)

Vì n(n+1) (n+2)  tích của 3 số tự nhiên liên tiếp

=> n( n+1) (n+2) chia hết cho 3

và 3n c hia hết cho 3

=> \(n^3+3n^2+5n\) chia hết cho 3

NV
23 tháng 9 2020

\(B=1!+2.2!+3.3!+...+k.k!\)

\(=1!+\left(3-1\right)2!+\left(4-1\right)3!+...+\left(k+1-1\right)k!\)

\(=1!+3!-2!+4!-3!+...+\left(k+1\right)!-k!\)

\(=\left(k+1\right)!-1\)

\(C=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{n}{n!}-\frac{1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

NV
23 tháng 9 2020

2.

Với \(n=0\Rightarrow1\ge\frac{1}{2}\) đúng

Với \(n=1\Rightarrow1\ge1\) đúng

Giả sử BĐT đúng với \(n=k\ge2\) hay \(k!\ge2^{k-1}\)

Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay \(\left(k+1\right)!\ge2^k\)

Thật vậy, ta có:

\(\left(k+1\right)!=k!\left(k+1\right)\ge2^{k-1}.\left(k+1\right)>2^{k-1}.2=2^k\) (đpcm)

NV
9 tháng 2 2020

Bạn đã học công thức nghiệm dạng sai phân chưa nhỉ? Nếu rồi thì cứ áp dụng là xong, còn chưa thì làm từ từ vậy:

\(u_{n+2}-5u_{n+1}+6u_n=-2\)

\(\Leftrightarrow\left(u_{n+2}+1\right)-5\left(u_{n+1}+1\right)+6\left(u_n+1\right)=0\)

\(\Leftrightarrow\left(u_{n+2}+1\right)-2\left(u_{n+1}+1\right)=3\left[\left(u_{n+1}+1\right)-2\left(u_n+1\right)\right]\)

Đặt \(u_{n+1}+1-2\left(u_n+1\right)=v_n\)

\(\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_{n+1}=3v_n\end{matrix}\right.\) \(\Rightarrow v_n\) là CSN với công bội 3 \(\Rightarrow v_n=3^{n-1}\)

\(\Rightarrow u_{n+1}+1-2\left(u_n+1\right)=3^{n-1}\)

\(\Leftrightarrow u_{n+1}+1-\frac{1}{3}3^{n+1}=2\left(u_n+1-\frac{1}{3}3^n\right)\)

Đặt \(u_n+1-\frac{1}{3}3^n=x_n\Rightarrow\left\{{}\begin{matrix}x_1=1\\x_{n+1}=2x_n\end{matrix}\right.\)

\(\Rightarrow x_n=2^{n-1}\)

\(\Rightarrow u_n+1-\frac{1}{3}.3^n=2^{n-1}\Rightarrow u_n=3^{n-1}+2^{n-1}-1\)