Giải phương trình sau:
\(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2+6x+9}=\left|2x-1\right|\Leftrightarrow\sqrt{\left(x+3\right)^2}=\left|2x-1\right|\)
\(\Leftrightarrow\left|x+3\right|=\left|2x-1\right|\Leftrightarrow\left(\left|x+3\right|\right)^2=\left(\left|2x-1\right|\right)^2\)
\(\Leftrightarrow\left(x+3\right)^2=\left(2x-1\right)^2\Leftrightarrow x^2+6x+9=4x^2-4x+1\)
\(\Leftrightarrow x^2+6x+9-4x^2+4x-1=0\Leftrightarrow-3x^2+10x+8=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
thử lại ta thấy cả 2 nghiệm đều thỏa mãn phương trình đầu
vậy \(4;-\dfrac{2}{3}\) đều là nghiệm của phương trình đầu
vậy \(x=4;x=-\dfrac{2}{3}\)
\(ĐK:x\in R\)
Đặt \(x^2-2x=a\), PTTT:
\(-a+\sqrt{6a+7}=0\\ \Leftrightarrow\sqrt{6a+7}=a\\ \Leftrightarrow a^2-6a-7=0\\ \Leftrightarrow\left[{}\begin{matrix}a=7\\a=-1\left(loại.do.a=\sqrt{6a+7}\ge0\right)\end{matrix}\right.\\ \Leftrightarrow a=7\\ \Leftrightarrow x^2-2x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{matrix}\right.\)
Ta có
\(\left\{{}\begin{matrix}\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\\\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\) \(\forall x\)
\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\) \(\forall x\)
Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\) \(\forall x\)
\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4}=2\\3-\left(x-1\right)^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
Chắc là bạn ghi ko đúng đề, nghiệm của BPT này dài khoảng 2 trang giấy
b. 2 + \(\sqrt{2x-1}=x\) ĐKXĐ: \(x\ge0,5\)
<=> \(\sqrt{2x-1}\) = x - 2
<=> 2x - 1 = (x - 2)2
<=> 2x - 1 = x2 - 4x + 4
<=> -x2 + 2x + 4x - 4 - 1 = 0
<=> -x2 + 6x - 5 = 0
<=> -x2 + 5x + x - 5 = 0
<=> -(-x2 + 5x + x - 5) = 0
<=> x2 - 5x - x + 5 = 0
<=> x(x - 5) - (x - 5) = 0
<=> (x - 1)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
=>|x-1|+|x-3|=1
TH1: x<1
Pt sẽ la 1-x+3-x=1
=>4-2x=1
=>x=3/2(loại)
TH2: 1<=x<3
Pt sẽ là x-1+3-x=1
=>2=1(loại)
TH3: x>=3
Pt sẽ là x-1+x-3=1
=>2x-4=1
=>2x=5
=>x=5/2(loại)