Cho △DDEF vuông tại D( DF > DE) .Vẽ đường tròn tâm O đường kính DF, cắt EF tại H.
a) Chứng minh DH ⊥ EF (1đ)
b) Từ O vẽ OK vuông góc với HF tại K .Cho OF = 5cm và HF = 8cm. Chứng minh K là trung điểm của HF và tính OK (1,5đ)
c) Chứng minh HE . HF = 4. OK2 (0,5đ)
\(a,\widehat{DHF}=90^0\)(góc nt chắn nửa đg tròn) nên \(DH\perp EF\)
\(b,\left\{{}\begin{matrix}OK\perp HF\\DH\perp HF\end{matrix}\right.\Rightarrow OK//DH;FO=OD\Rightarrow FK=HK\\ \left\{{}\begin{matrix}FO=OD\\FK=HK\end{matrix}\right.\Rightarrow OK.là.đtb.\Delta DFH\)
Lại có \(FD=2FO=10\left(cm\right);DH=\sqrt{FD^2-FH^2}=6\left(cm\right)\left(pytago\right)\)
\(\Rightarrow OK=\dfrac{1}{2}DH=3\left(cm\right)\)
\(c,\) Áp dụng HTL tam giác
\(\Rightarrow DH^2=HE\cdot HF\)
Mà \(2OK=DH\Rightarrow\left(2OK\right)^2=HE\cdot HF\Rightarrow4OK^2=HE\cdot HF\)