K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\left|\overrightarrow{AC}+\overrightarrow{AC}\right|=2\cdot AC=2a\)

b: Gọi M là trung điểm của BC

=>BM=CM=a/2

\(AM=\sqrt{a^2-\left(\dfrac{a}{2}\right)^2}=\dfrac{a\sqrt{3}}{2}\)

\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\cdot AM=a\sqrt{3}\)

2 tháng 2 2019

a/ Xét \(\Delta BMD\)ta có:

\(MD=MB\left(gt\right)\)=> \(\Delta BMD\)cân tại M

Mà \(B\widehat{M}D=A\widehat{C}B=60^0\)( 2 góc n.t chắn cung AB)

Nên \(\Delta BMD\)đều

b/ Ta có \(\hept{\begin{cases}A\widehat{B}D+D\widehat{B}C=A\widehat{B}C\\D\widehat{B}C+M\widehat{B}C=D\widehat{B}M\\A\widehat{B}C=D\widehat{B}M\left(=60^0\right)\end{cases}}\)

=> \(A\widehat{B}D=M\widehat{B}C\)

Xét \(\Delta ADB\)và \(\Delta MBC\)ta có :

\(\hept{\begin{cases}BD=BM\left(\Delta MBDđều\right)\\BA=BC\left(\Delta ABCđều\right)\\A\widehat{B}D=M\widehat{B}C\left(cmt\right)\end{cases}}\)

=> \(\Delta ADB=\Delta CMB\)(c-g-c)

=>\(AD=MC\)

Ta có: \(\hept{\begin{cases}AM=AD+MD\\MD=MB\left(\Delta MBDđều\right)\\AD=MC\left(cmt\right)\end{cases}}\)

=>\(AM=MB+MC\)

c/

Ta có: \(AB=AC\)<=>\(\widebat{AB}=\widebat{AC}\)

Xét \(\Delta MAB\)\(\Delta MHC\)ta có:

\(B\widehat{A}M=H\widehat{C}M\)(2 góc n.t chắn cung MB )

\(A\widehat{M}B=H\widehat{M}C\)(2 góc n.t chắn 2 cung = nhau )

=>\(\Delta MAB\)đồng dạng\(\Delta MCH\)

=>\(\frac{MA}{MC}=\frac{MB}{MH}\)=>\(\frac{MA}{MB.MC}=\frac{1}{MH}\)=>\(\frac{MB+MC}{MB.MC}=\frac{1}{MH}\)=>\(\frac{1}{MB}+\frac{1}{MC}=\frac{1}{MH}\left(đpcm\right)\)

a: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)
AM chung

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là phân giác

nên AM là đường cao

c: Xét ΔAMD vuông tại D và ΔAME vuông tại E có

AM chung

\(\widehat{MAD}=\widehat{MAE}\)

Do đó: ΔAMD=ΔAME

Suy ra: AD=AE

Xét ΔBAM và ΔCAM có

AM chung

góc BAM=góc CAM

AB=AC

=>ΔBAM=ΔCAM

=>MB=MC và góc AMB=góc AMC=180/2=90 độ

=>AM vuông góc BC