Bài 1: Thực hiện phép tính:
a) [9(a-b)3+ 2(a-b)2] : (b-a)2
b) 5(x-2y)3 (5x-10y)
c) (x3+8y3) : (x+2y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
a)=\(3x^3-15x^2+21x\)
b)\(=-2x^4y-10x^2y+2xy\)
c)\(=-x^3+6x^2+5x-4x^2+24x+20=-x^3+2x^2+29x+20\)
d)\(=2x^4-3x^3+4x^2-2x^2+3x-4=2x^4-3x^32x^2+3x-4\)
e)\(=x^2-4y^2\)
f)\(=-2x^2y^3+y-3\)
g)\(=3xy^4-\dfrac{1}{2}y^2+2x^2y\)
h)\(=9x^2-6x+1-7x^2-14=2x^2-6x-13\)
i)\(=x^2-x-3\)
j)\(=\left(x+2y\right)\left(x^2-2y+4y^2\right):\left(x+2y\right)=x^2-2y+4y^2\)
Đáp án:
a.3x³−5x²+7xa.3x³−5x²+7x
b.−4x²y−10x²y+2xyb.−4x²y−10x²y+2xy
c.−x³+2x²+29x+20c.−x³+2x²+29x+20
d.2x⁴−3x³+2x²+3x−4d.2x⁴−3x³+2x²+3x−4
e.x²−4y²e.x²−4y²
h.2x²−6x+13h.2x²−6x+13
g.3xy⁴−12y²+2x²yg.3xy⁴−12y²+2x²y
f.−2x²y³+y−3f.−2x²y³+y−3
Giải thích các bước giải:
a.3x.(x²−5x+7)a.3x.(x²−5x+7)
=3x³−5x²+7x=3x³−5x²+7x
b.−2xy.(2x³+5x−1)b.−2xy.(2x³+5x−1)
=−4x⁴y−10xy²+2xy=−4x⁴y−10xy²+2xy
c.(x+4).(−x²+6x+5)c.(x+4).(−x²+6x+5)
=−x³+6x²+5x−4x²+24x+20=−x³+6x²+5x−4x²+24x+20
=−x³+2x²+29x+20=−x³+2x²+29x+20
d.(x²−1).(2x²−3x+4)d.(x²−1).(2x²−3x+4)
=2x⁴−3x³+4x²−2x²+3x−4=2x⁴−3x³+4x²−2x²+3x−4
=2x⁴−3x³+2x2+3x−4=2x⁴−3x³+2x2+3x−4
e.(x+2y).(x−2y)e.(x+2y).(x−2y)
=x²−(2y)²=x²−(2y)²
=x²−4y²=x²−4y²
h.(3x−1)²−7(x²+2)h.(3x−1)²−7(x²+2)
=9x²−6x+1−7x²−14=9x²−6x+1−7x²−14
=2x²−6x+13=2x²−6x+13
g.(6x²g.(6x²y⁵−xy³+4x³y²):2xy−xy³+4x³y²):2xy
=3xy⁴−12y²+2x²y=3xy⁴−12y²+2x²y
f.(−12x³y⁴+6xy²−18xy):6xyf.(−12x³y⁴+6xy²−18xy):6xy
=−2x³y³+y−3
Bài 3:
a: \(x^2-16=\left(x-4\right)\cdot\left(x+4\right)\)
b: \(x^2+2x+1-y^2=\left(x+1+y\right)\left(x+1-y\right)\)
c: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3