K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

Bài 1 : 

\(C=2x^2-7x-13\)

\(2C=4x^2-14x-26\)

\(2C=\left(4x^2-14x+\frac{49}{4}\right)-\frac{55}{4}\)

\(2C=\left(2x-\frac{7}{2}\right)^2-\frac{55}{4}\ge\frac{-55}{4}\)

\(C=\frac{\left(2x-\frac{7}{2}\right)^2-\frac{55}{4}}{2}\ge\frac{-55}{4}:2=\frac{-55}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-\frac{7}{2}\right)^2=0\)

\(\Leftrightarrow\)\(x=\frac{7}{4}\)

Vậy GTNN của \(C\) là \(\frac{-55}{8}\) khi \(x=\frac{7}{4}\)

Chúc bạn học tốt ~ 

20 tháng 9 2018

gtnn mà bạn

29 tháng 10 2021

Bài 1:

a) \(x^2-6x+15=\left(x^2-6x+9\right)+6=\left(x-3\right)^2+6\ge6\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)

b) \(3x^2-15x+4=3\left(x^2-5x+\dfrac{25}{4}\right)-\dfrac{59}{4}=3\left(x-\dfrac{5}{2}\right)^2-\dfrac{59}{4}\ge-\dfrac{59}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)

Bài 2:

a) \(\Rightarrow\left(x-5\right)\left(x+5\right)+2\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

c) \(\Rightarrow x^2\left(x-2\right)+7\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+7\right)=0\)

\(\Rightarrow x=2\left(do.x^2+7\ge7>0\right)\)

 

Bài 2:

\(A=\dfrac{2}{-x^2-2x-2}=\dfrac{-2\left(-x^2-2x-2\right)-2x^2-4x-2}{-x^2-2x-2}\) \(=-2+\dfrac{2\left(x+1\right)^2}{-x^2-2x-2}\ge-2\)

  Dấu bằng xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

  Vậy \(A_{Min}=-2\) khi \(x=-1\)

Bài 1:

a) Ta có: \(2x^2-6=0\)

\(\Leftrightarrow2x^2=6\)

\(\Leftrightarrow x^2=3\)

hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)

Vậy: \(S=\left\{\sqrt{3};-\sqrt{3}\right\}\)

8 tháng 8 2021

a) \(A=\sqrt{x-2}+\sqrt{6-x}\)

\(\Rightarrow A^2=x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

Ta có \(\sqrt{\left(x-2\right)\left(6-x\right)}\ge0,\forall x\)

Do đó \(A^2=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)

Mà A không âm \(\Leftrightarrow A\ge2\)

Dấu "=" \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

Áp dụng BĐT Bunhiacopxky:

\(A^2=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\le\left(x-2+6-x\right)\left(1+1\right)=4\cdot2=8\)

\(\Leftrightarrow A\le\sqrt{8}\)

Dấu "=" \(\Leftrightarrow x-2=6-x\Leftrightarrow x=4\)

Mấy bài còn lại y chang nha 

Tick hộ nha

8 tháng 8 2021

ank

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

a) Đặt $\sqrt{x+1}=a; \sqrt{9-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b$ với $a,b\geq 0$ và $a^2+b^2=10$Ta có:

$f^2(a,b)=(a+b)^2=a^2+b^2+2ab=10+2ab\geq 10$ do $ab\geq 0$

$\Rightarrow f(a,b)\geq \sqrt{10}$ hay $f_{\min}=\sqrt{10}$

Mặt khác: $f^2(a,b)=(a+b)^2\leq 2(a^2+b^2)=20$ (theo BĐT AM-GM)

$\Rightarrow f(a,b)\leq \sqrt{20}=2\sqrt{5}$ hay $f_{\max}=2\sqrt{5}$

b) 

Đặt $\sqrt{x}=a; \sqrt{2-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b+ab$ với $a,b\geq 0$ và $a^2+b^2=2$. Ta có:

$f(a,b)=\sqrt{(a+b)^2}+ab=\sqrt{a^2+b^2+2ab}+ab=\sqrt{2+2ab}+ab\geq \sqrt{2}$ do $ab\geq 0$

Vậy $f_{\min}=\sqrt{2}$

Lại có, theo BĐT AM-GM:

$f(a,b)=\sqrt{2+2ab}+ab\leq \sqrt{2+a^2+b^2}+\frac{a^2+b^2}{2}=\sqrt{2+2}+\frac{2}{2}=3$

Vậy $f_{\max}=3$

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

c) Đặt $\sqrt{8-x^2}=a$ thì bài toán trở thành tìm max, min của:

$f(x,a)=x+a+ax$ với $x,a\geq 0$ và $x^2+a^2=8$. Bài này chuyển về y hệt  như phần b. 

$f_{\min}=2\sqrt{2}$

$f_{\max}=8$

d) Tương tự:

$f_{\min}=2$ khi $x=\pm 2$

$f_{\max}=2+2\sqrt{2}$ khi $x=0$

29 tháng 10 2017

B=(x^2-6x+9)-8

B=(x-3)^2-8

Vì (x-3)^2\(\ge0\forall x\)

-> (x-3)-8\(\ge-8\forall x\)

Dấu = xảy ra<=> x-3=0<=>x=3

C=2x^2-10x+1

C=2(x^2-5x+6,25)-11,5

C= 2(x-2,5)^2-11,5

Vì 2(x-2,5)^2\(\ge0\forall x\)

->2(x-2,5)^2-11,5\(\ge-11,5\forall x\)

Dấu = xẩy ra<=> x-2,5=0<=>x=2,5

Vậy Min C là -11,5 <=> x=2,5

D= x^2+10-25

D=(x^2+10+25)-50

D=(x+5)^2-50

Vì (x-5)^2 \(\ge0\forall x\)

-> (x-5)^2-50\(\ge-50\forall x\)

Dấu = xẩy ra <=> x-5=0<=>x=5

Vậy Min D là -50 <=>x=5

29 tháng 10 2017

Tìm Max

B= 5x-x^2

B=-(x^2-5x+25/4)-25/4

B= -(x-5/2)^2-25/4

Vì -(x-5/2)^2\(\le0\forall x\)

-> -(x-5/2)^2-25/4\(\le\)-25/4

Dấu = xẩy ra <=> x-5/2=0<=>x=5/2

Vậy Max B là -25/4 <=> x=5/2

C=-x^2-6x+10

C=-(x^2+6x+9)+19

C= -(x+3)^2+19

Vì -(x+3)^2\(\le\)0

=> -(x+3)^2+19\(\le\)19

Dấu = xảy ra <=> x+3=0<=>x=-3

D= -2x^x+8x+12

D=-2(x^2-4x+4)+20

D=-2(x-2)^2 +20

 Vì -2(x-2)^2\(\le\)0

=> -2(x-2)^2+20\(\le\)20

Dấu= xẩy ra<=> x-2=0<=>x=2

Vậy Max D là 20<=>x-2

23 tháng 12 2015

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

Tìm GTLN - GTNN của các biểu thức ?* bài 1: Tìm GTNN: a) A= (x - 5)² + (x² - 10x)² - 24 b) B= (x - 7)² + (x + 5)² - 3 c) C= 5x² - 6x +1 d) D= 16x^4 + 8x² - 9 e) A= (x + 1)(x - 2)(x - 3)(x - 6) f) B= (x - 2)(x - 4)(x² - 6x + 6) g) C= x^4 - 8x³ + 24x² - 8x + 25 h) D= x^4 + 2x³ + 2x² + 2x - 2 i) A= x² + 4xy + 4y² - 6x – 12y +4 k) B= 10x² + 6xy + 9y² - 12x +15 l) C= 5x² - 4xy + 2y² - 8x – 16y +83 m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 *...
Đọc tiếp

Tìm GTLN - GTNN của các biểu thức ?

* bài 1: Tìm GTNN: 
a) A= (x - 5)² + (x² - 10x)² - 24 
b) B= (x - 7)² + (x + 5)² - 3 
c) C= 5x² - 6x +1 
d) D= 16x^4 + 8x² - 9 

e) A= (x + 1)(x - 2)(x - 3)(x - 6) 
f) B= (x - 2)(x - 4)(x² - 6x + 6) 
g) C= x^4 - 8x³ + 24x² - 8x + 25 
h) D= x^4 + 2x³ + 2x² + 2x - 2 

i) A= x² + 4xy + 4y² - 6x – 12y +4 
k) B= 10x² + 6xy + 9y² - 12x +15 
l) C= 5x² - 4xy + 2y² - 8x – 16y +83 

m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 

* Bài 2: Tìm GTLN: 
a) M= -7x² + 4x -12 
b) N= -16x² - 3x +14 

c) M= -x^4 + 4x³ - 7x² + 12x -5 
d) N= -(x² + x – 2) (x² +9x+18) +27 

* Bài 3: 
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y² 
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y² 
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³ 

* Bài 4: Tìm GTLN và GTNN của các biểu thức: 
1) A = (3 - 4x)/(x² + 1) 
2) B= (8x + 3)/(4x² + 1) 
3) C= (2x+1)/(x²+2)

0
28 tháng 2 2021

 4-3=2( dân chơi mới hiểu)

22 tháng 6 2021

Chắc là viết thiếu số "1" đấy, sợ lớp 11 còn chưa làm được cơ