K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

Do đó: ΔABC∼ΔHAC

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=BH\cdot HC\)

c: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có 

góc C chung

Do đó: ΔCDE\(\sim\)ΔCAB

Suy ra: CD/CA=CE/CB

hay \(CD\cdot CB=CA\cdot CE\)

22 tháng 1 2022

A B C H D E

a/ Xét tam giác ABC và tam giác HAC có:

\(\widehat{C}chung.\)

\(\widehat{BAC}=\widehat{AHC}=90^o.\)

\(\Rightarrow\) Tam giác ABC ∼ Tam giác HAC (g - g).

b/ Xét tam giác ABC vuông tại A; AH là đường cao:

\(AH^2=BH.HC\) (Hệ thức lượng).

c/ Xét tam giác ABC và tam giác DEC có:

\(\widehat{C}chung.\)

\(\widehat{BAC}=\widehat{EDC}=90^o.\)

\(\Rightarrow\) Tam giác ABC ∼ Tam giác DEC (g - g).

d/ Tam giác ABC ∼ Tam giác DEC (cmt).

\(\Rightarrow\dfrac{BC}{EC}=\dfrac{AC}{DC}\) (2 cạnh tương ứng tỉ lệ).

\(\Rightarrow\dfrac{BC}{AC}=\dfrac{EC}{DC}.\)

Xét tam giác BEC và tam giác ADC có:

\(\dfrac{BC}{AC}=\dfrac{EC}{DC}.\)

\(\widehat{C}chung.\)

\(\Rightarrow\) Tam giác BEC ∼ Tam giác ADC (c - g - c).

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

=>BA/BC=BH/BA

=>BA^2=BH*BC

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

c: Xét ΔCAM có

CK,AH là đường cao

CK cắt AH tại I

=>I là trực tâm

=>MI vuông góc AC

=>MI//AB

Xét ΔHAB có

M là trung điểm của HB

MI//AB

=>I là trung điểm của HA

1: BC=10cm

Xét ΔABC có BD là đường phân giác

nên AD/AB=DC/BC

=>AD/6=DC/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó: AD=3(cm); BD=5(cm)

2: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Xét ΔABI và ΔCBD có

\(\widehat{ABI}=\widehat{CBD}\)

\(\widehat{IAB}=\widehat{DCB}\)

Do đó: ΔABI\(\sim\)ΔCBD

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: ΔAHB vuông tại H có HE là đường cao

nên AH^2=AE*AB

ΔAHC vuông tại H có HF là đường cao

nên AH^2=AF*AC

=>AE*AB=AF*AC

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>góc BAH=góc CAH

Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>NH=MH

AH^2-AN^2=NH^2

BH^2-BM^2=MH^2

mà NH=MH

nên AH^2-AN^2=BH^2-BM^2

=>AH^2+BM^2=AN^2+BH^2

5 tháng 2 2022

bạn ơi mình cần lời giải và hình cơ mà ;-;