Tìm x:
a) y2 - 25 - (y + 5) = 0
b) y(y + 6) - 7y - 42 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\\ b,\Leftrightarrow\left(3x-5\right)^2=0\Leftrightarrow x=\dfrac{5}{3}\)
a) \(\text{5x(x-2)+(2-x)=0}\)
\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\text{x(2x-5)-10x+25=0}\)
\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\\ \Rightarrow\left(x-5\right)\left(2x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=2,5\end{matrix}\right.\)
c) \(\dfrac{25}{16}-4x^2+4x-1=0\)
\(\Rightarrow\dfrac{9}{16}-4x^2+4x=0\)
\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)
\(\Rightarrow-4x^2-\dfrac{1}{2}x+\dfrac{9}{2}x+\dfrac{9}{16}=0\)
\(\Rightarrow\left(-4x^2-\dfrac{1}{2}x\right)+\left(\dfrac{9}{2}x+\dfrac{9}{16}\right)=0\)
\(\Rightarrow-\dfrac{1}{2}x\left(8x+1\right)+\dfrac{9}{16}\left(8x+1\right)=0\)
\(\Rightarrow\left(-\dfrac{1}{2}x+\dfrac{9}{16}\right)\left(8x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}x+\dfrac{9}{16}=0\\8x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=\dfrac{-1}{8}\end{matrix}\right.\)
\(a,\Leftrightarrow x\left(x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\\ b,\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)=0\\ \Leftrightarrow x\left(x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\\ c,\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\\ d,\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)
a) \(\Leftrightarrow x\left(x+9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)
b) \(\Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
c) \(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
d) \(\Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)
a: Ta có: \(x^2\ge0\forall x\)
\(\left(y-\dfrac{1}{10}\right)^4\ge0\forall y\)
Do đó: \(x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left(x,y\right)=\left(0;\dfrac{1}{10}\right)\)
a. `4x^2-20x+25=0`
`<=>(2x)^2-2.2x.5 +5^2=0`
`<=>(2x-5)^2=0`
`<=>2x-5=0`
`<=>x=5/2`
b. `(x-5)(x+5)-(x-3)^2=2(x-7)`
`<=>x^2-25-x^2+6x-9=2x-14`
`<=>6x-34=2x-14`
`<=>4x=20`
`<=>x=5`
\(a,4x^2-20x+25=0\Leftrightarrow\left(2x\right)^2-2.2x.5+5^2=0\)
\(\Leftrightarrow\left(2x-5\right)^2=0\Leftrightarrow x=\dfrac{5}{2}\)
b, \(\left(x-5\right)\left(x+5\right)-\left(x-3\right)^2=2\left(x-7\right)\)
\(\Leftrightarrow x^2-25-x^2+6x-9=2x-14\Leftrightarrow4x=20\Leftrightarrow x=5\)
a: \(9x^2-30x+25=0\)
\(\Leftrightarrow3x-5=0\)
hay \(x=\dfrac{5}{3}\)
c: \(9x^2-25=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
a) \(9x^2-30x+25=0\Rightarrow\left(3x-5\right)^2=0\Rightarrow x=\dfrac{5}{3}\)
b) \(25x^2-5x+\dfrac{1}{4}=0\Rightarrow\left(10x-1\right)^2=0\Rightarrow x=\dfrac{1}{10}\)
c) \(9x^2-25=0\Rightarrow\left(3x-5\right)\left(3x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
d) \(\left(2x-1\right)^2-\left(3x+2\right)^2=0\)
\(\Rightarrow\left(2x-1+3x+2\right)\left(2x-1-3x-2\right)=0\)
\(\Rightarrow-\left(5x+1\right)\left(5x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
a) \(\dfrac{5}{y}=\dfrac{1}{2}\)
\(y=\dfrac{5\times2}{1}=10\)
b) \(\dfrac{42}{25}:\dfrac{y}{5}=\dfrac{6}{5}\)
\(\dfrac{y}{5}=\dfrac{42}{25}:\dfrac{6}{5}\)
\(\dfrac{y}{5}=\dfrac{7}{5}\)
\(y=7\)
\(a,\Leftrightarrow\left(y-5\right)\left(y+5\right)-\left(y+5\right)=0\\ \Leftrightarrow\left(y-6\right)\left(y+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}y=6\\y=-5\end{matrix}\right.\)
\(b,\Leftrightarrow y\left(y+6\right)-7\left(y+6\right)=0\\ \Leftrightarrow\left(y-7\right)\left(y+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}y=7\\y=-6\end{matrix}\right.\)
Nhường em đi mà