Liệt kê các phân tử trong tập hợp
D={x\x=2k với k\(\in Z\) và -3<x<13}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$k\in\mathbb{Z}, 0\leq k\leq 4$ nên $k=0,1,2,3,4$
Đến đây, ta thay vô $n=2k+1$ thì $n=1,3,5,7,9$. Những số này chính là phần từ của tập hợp $X$
Vậy ta có thể viết tập $X$ như sau:
$X=\left\{1;3;5;7;9\right\}$
Đáp án C.
A)Vì x = 2k và x nhỏ hơn hoặc bằng 100 mà số k nào nhân với 2 cũng ra số chẵn.
Ta có:A={2;4;6;........;98;100}
B)Ta có : 2+4+6+........+98+100=\(\frac{\left(100+2\right).\left[\left(100-2\right):2+1\right]}{2}=\frac{102.50}{2}=102.25=2550\)
a: A={0;1;2;3}
b: B={-16;-13;-10;-7;-4;-1;2;5;8}
c: C={-9;-8;-7;...;7;8;9}
d: \(D=\varnothing\)
a) \(2x^3-3x^2-5x=0\)
\(x\left(x+1\right)\left(2x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=-1\left(TM\right)\\x=\dfrac{5}{2}\left(L\right)\end{matrix}\right.\)
\(A=\left\{-1\right\}\)
b) \(x< \left|3\right|\)\(\Leftrightarrow-3< x< 3\)
\(B=\left\{-2;-1;1;2\right\}\)
c) \(C=\left\{-3;3;6;9\right\}\)
a) \(A=\left\{x\in Z|2x^3-3x^2-5x=0\right\}\)
\(2x^3-3x^2-5x=0\)
\(\Leftrightarrow x\left(2x^2-3x-5\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow A=\left\{0;-1\right\}\)
b) \(B=\left\{-2;-1;0;1;2\right\}\)
c) \(C=\left\{-3;3;6;9\right\}\)
D = { - 4 , -2 , 0 , 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 , 22 }
D={-4; -2;0;2;4;6;8;10;12;14;16;18;20;22;24}