cho tam giác ABC có góc Atrừ góc B = 20 độ.Tia phân giác của góc A cắt BC ở D.Tính số đo các góc ADC,góc ADB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Do $AD$ là phân giác $\widehat{A}$ nên $\widehat{DAC}=\widehat{DAB}$
Ta có:
$\widehat{ADB}=\widehat{DAC}+\widehat{C}$
$\widehat{ADC}=\widehat{DAB}+\widehat{B}$
$\Rightarrow \widehat{ADC}-\widehat{ADB}=\widehat{B}-\widehat{C}=\alpha$
Mà $\widehat{ADC}+\widehat{ADB}=180^0$
Do đó:
$\widehat{ADC}=\frac{180^0+\alpha}{2}$
$\widehat{ADB}=\frac{180^0-\alpha}{2}$
Minz Ank: à đó là tính chất góc kề bù 1 góc trong tam giác thì bằng tổng 2 góc còn lại trong tam giác đó.
Dễ hiểu hơn, thì trong tam giác $ADC$ chả hạn, tổng 3 góc $\widehat{ADC}+\widehat{DAC}+\widehat{C}=180^0$
Mà $\widehat{ADC}+\widehat{ADB}=180^0$
$\Rightarrow \widehat{DAC}+\widehat{C}=\widehat{ADB}$ đó em
Đặt \(\widehat{ADC}=b;\widehat{ADB}=a\)
Ta có: \(a+\widehat{B}+\widehat{BAD}=b+\widehat{C}+\widehat{CAD}\)
\(\Leftrightarrow a+\widehat{C}+20^0=b+\widehat{C}\)
\(\Leftrightarrow a-b=-20\)
mà a+b=180
nên 2a=160
=>a=80
=>b=100