Chứng minh rằng
a) ab + ba chia hết cho 11
b) ab - ba chia hết cho 9 ( a>b )
2, Cho abc chia hết cho 27. Chứng minh rằng bca chia hết cho 27
GIÚP EM VỚI CÁC ANH CHỊ ƠII
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)
Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11
a, Ta có:
\(\overline{ab}+\overline{ba}=10a+b+10b+a=11\left(a+b\right)\)
=> ab + ba chia hết cho 11(đpcm)
b, Ta có:
\(\overline{ab}-\overline{ba}=10a+b-10b-a=9\left(a-b\right)\)
=> ab - ba chia hết cho 9 (a > b)(đpcm)
Chúc bạn học tốt!!!
Bài 1 :
abc chia hết cho 27
\(\Rightarrow\)100a + 10b + c chia hết cho 27
\(\Rightarrow\)10(100a + 10b + c) chia hết cho 27
\(\Rightarrow\)1000a + 100b + 10c chia hết cho 27
\(\Rightarrow\)999a + (100b + 10c + a) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca chia hết cho 27
Bài 2 :
a) ab + ba = 10a + b + 10b + a = (10a + a) + (10b + b) = 11a + 11b = 11(a + b) chia hết cho 11
b)Ta thấy ab và ba có tổng các chữ số như nhau nên có cùng số dư khi chia cho 9, do đó hiệu của chúng phải chia hết cho 9
abc chia hết cho 27
=100a+10b+10c chia hết cho 27
=10(100a+10b+c) chia hết cho 27
=1000a+100b+10c chia hết cho 27
=999a+(100b+10c+a) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b+10c+a=bca chia hết cho 27
a) Ta có : ab - ba
=> a . 10 + b - b . 10 + a
=> ( a . 10 ) - a + ( 10 . b ) - b
=> 9. a + 9 . b
=> 9 . ( a + b ) chia hết cho 9 ( đpcm)
đpcm là điều phải chứng minh nha bạn
Câu b ban làm tương nha
Chúc bạn học giỏi
ta có abc = 100a+10b+c
vì ưcln (4 , 21) = 1 nên 100a + 10b + c chia hết cho 21
<=>4 ( 100a +10b +c chia hết cho 21
<=> 400a +40b +4c chia hết cho 21
,<=>(339a +42b)+(a -2b+4c) chia hết cho 21
<=>21(19a+2b)+(a-2b+4c) chia hết cho 21
<=>(a-2b+4c) chia hết cho21
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
a)ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
b)ab-ba⋮9
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b-10b+a
= 9a - 9b
Ta thấy: 9a⋮9 ; 9b⋮9
=>ab+ba⋮9 (ĐPCM)
a, a b + b a = (10a+b)+(10b+a) = 11a+11b = 11.(a+b) ⋮ 11
b, a b - b a = (10a+b) - (10b+a) = 9a - 9b = 9(a - b) ⋮ 9 (a>b)
a) Ta có: ab=a.10+b
ba=10b+a
ab=ba=10a+b+10b+a=11a+11b=11(a+b)
=> ab+ba chia hết cho 11
a, ta có :ab=a.10+b
ba=b.10+a
ab=ba=10.a+b+10.b+a=11a+11b=11.(a+b)
=>ab+ba chia het cho 11
bạn tham khảo link này nha:
https://olm.vn/hoi-dap/question/3625.html
https://olm.vn/hoi-dap/question/134730.html
https://olm.vn/hoi-dap/question/86943.html
bn tham khỏa 3 đường link này mk nghĩ sẽ giúp ick cho bn đó k cho mk nha LOVE bn nhìu
a, Ta có ab +ba = 10a+b+10b+a=11(a+b)
Do 11(a+b) chia hết cho 11 nên ab + ba chia hết cho 11
b, Với a>b ta có
ab - ba = 10a+b-10b-a = 9(a-b)
Do 9(a-b) chia hết cho 9 nên ab - ba chia hết cho 9