Cho a,b thỏa mãn :(a+\(\sqrt{a^2}+2017\)).(b+\(\sqrt{b^2+2017}\)).Tính a+ b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thây \(\hept{\begin{cases}\sqrt{a^2+2017}-a\ne0\\\sqrt{b^2+2017}-b\ne0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(a+\sqrt{a^2+2017}\right)\left(\sqrt{a^2+2017}-a\right)\left(b+\sqrt{b^2+2017}\right)=2017\left(\sqrt{a^2+2017}-a\right)\\\left(a+\sqrt{a^2+2017}\right)\left(b+\sqrt{b^2+2017}\right)\left(\sqrt{b^2+2017}-b\right)=2017\left(\sqrt{b^2+2017}-b\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2017\left(b+\sqrt{b^2+2017}\right)=2017\left(\sqrt{a^2+2017}-a\right)\\2017\left(a+\sqrt{a^2+2017}\right)=2017\left(\sqrt{b^2+2017}-b\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b+\sqrt{b^2+2017}=\sqrt{a^2+2017}-a\\a+\sqrt{a^2+2017}=\sqrt{b^2+2017}-b\end{cases}}\)
\(\Leftrightarrow a+b=0\)
a) điều kiện xác định : \(a>2;a\ne11\)
ta có : \(P=\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{11-a}\right):\left(\dfrac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\dfrac{1}{\sqrt{a-2}}\right)\)
\(\Leftrightarrow P=\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{\left(3+\sqrt{a-2}\right)\left(3-\sqrt{a-2}\right)}\right):\left(\dfrac{3\sqrt{a-2}+1}{\sqrt{a-2}\left(\sqrt{a-2}-3\right)}-\dfrac{1}{\sqrt{a-2}}\right)\) \(\Leftrightarrow P=\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{\sqrt{a-2}\left(3-\sqrt{a-2}\right)+a+7}{\left(3+\sqrt{a-2}\right)\left(3-\sqrt{a-2}\right)}\right):\left(\dfrac{3\sqrt{a-2}+1-\sqrt{a-2}+3}{\sqrt{a-2}\left(\sqrt{a-2}-3\right)}\right)\) \(\Leftrightarrow P=\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{3\left(\sqrt{a-2}+3\right)}{\left(3+\sqrt{a-2}\right)\left(3-\sqrt{a-2}\right)}\right):\left(\dfrac{2\sqrt{a-2}+4}{\sqrt{a-2}\left(\sqrt{a-2}-3\right)}\right)\) \(\Leftrightarrow P=\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{3}{\left(3-\sqrt{a-2}\right)}\right)\left(\dfrac{\sqrt{a-2}\left(\sqrt{a-2}-3\right)}{2\left(\sqrt{a-2}+2\right)}\right)\) \(\Leftrightarrow P=\dfrac{-\sqrt{a-2}}{2}\)
ta có : \(a+b=\sqrt{2017-a^2}+\sqrt{2017-b^2}\)
\(\Leftrightarrow\left(a+b\right)\left(\sqrt{2017-a^2}-\sqrt{2017-b^2}\right)=b^2-a^2\)
\(\Leftrightarrow b-a=\sqrt{2017-a^2}-\sqrt{2017-b^2}\)
\(\Leftrightarrow2b=2\sqrt{2017-a^2}\Leftrightarrow b^2=2017-a^2\Rightarrow\left(đpcm\right)\)
ta có :
\(ab>2016a+2017b\Rightarrow a\left(b-2016\right)>2017b\) hay ta có : \(a>\frac{2017b}{b-2016}\)
Vậy \(a+b>\frac{2017b}{b-2016}+b=b+2017+\frac{2016\times2017}{b-2106}=b-2016+\frac{2016\times2017}{b-2106}+2016+2017\)
\(\ge2\sqrt{2016\times2017}+2016+2017=\left(\sqrt{2016}+\sqrt{2017}\right)^2\)
Vậy ta có đpcm