K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

NV
16 tháng 7 2021

24.

\(cos\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)

\(y_{max}=4\)

26.

\(y=\sqrt{2}cos\left(2x-\dfrac{\pi}{4}\right)\)

Do \(cos\left(2x-\dfrac{\pi}{4}\right)\le1\Rightarrow y\le\sqrt{2}\)

\(y_{max}=\sqrt{2}\)

b.

\(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

16 tháng 7 2018

mở dấu trị tuyệt đối ra rồi tính như bình thường

11 tháng 5 2019

Ta có :

M = x3 + y3 = ( x + y ) ( x2 - xy + y2 ) = x2 + y2 - xy = ( x2 + 2xy + y2 ) - 3xy

= 1 - 3xy

Mà \(xy\le\frac{\left(x+y\right)^2}{4}\)\(\Rightarrow3xy\le\frac{3.\left(x+y\right)^2}{4}=\frac{3}{4}\)\(\Rightarrow-3xy\ge-\frac{3}{4}\)

\(\Rightarrow M=1-3xy\ge1-\frac{3}{4}=\frac{1}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow\)x = y = 0,5

12 tháng 5 2019

Sửa đề là tìm min nhé! :) Em có một cách khác,khác với cách mà mọi người hay làm như sau:

Với mọi số thực k không âm,ta luôn có: \(\left(x+k\right)\left(x-\frac{1}{2}\right)^2\ge0\Leftrightarrow\left(x+k\right)\left(x^2-x+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow x^3-x^2+\frac{1}{4}x+kx^2-kx+\frac{1}{4}k\ge0\)

\(\Leftrightarrow x^3+\left(k-1\right)x^2-\left(k-\frac{1}{4}\right)x+\frac{1}{4}k\ge0\)

\(\Leftrightarrow x^3\ge-\left(k-1\right)x^2+\left(k-\frac{1}{4}\right)x-\frac{1}{4}k\)

Chọn k = 1 ta được: \(x^3\ge\frac{3}{4}x-\frac{1}{4}\).Tương tự với y ta được: \(y^3\ge\frac{3}{4}y-\frac{1}{4}\)

Cộng theo vế hai BĐT trên,ta được: \(M=x^3+y^3\ge\frac{3}{4}\left(x+y\right)-\frac{1}{2}=\frac{1}{4}\)

Dấu "=" xảy ra khi x = y = 1/2

Vậy...