K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2022

4 và 6

 

DD
28 tháng 9 2021

a) \(p\)là số nguyên tố lớn hơn \(3\)nên \(p\)là số lẻ. 

\(p=2k+1\)suy ra \(\left(p-1\right)\left(p+1\right)=2k\left(2k+2\right)=4k\left(k+1\right)⋮8\)

(vì \(k\left(k+1\right)\)là tích của hai số tự nhiên liên tiếp nên chia hết cho \(2\))

\(p\)là số nguyên tố lớn hơn \(3\)nên \(p=3k\pm1\).

Khi đó \(\left(p-1\right)\left(p+1\right)\)sẽ chia hết cho \(3\).

Mà \(\left(8,3\right)=1\)nên \(\left(p-1\right)\left(p+1\right)\)chia hết cho \(8.3=24\).

b) Đặt \(\left(2n+1,3n+1\right)=d\).

Suy ra 

\(\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

Vì p là SNT lớn hơn 3 lên p—1 và p+1 là số chẵn=» (p—1)×(p+1) chia hết cho 8(1)
vì p là số nguyên tố lớn hơn 3 lên p có dạng 3k+1 hoặc 3k+2. Tính từng trường hợp »» chia hết cho 3.kết hợp vs (1) chia hết cho 24(điều phải chứng minh)

Vì p là số nguyên tố >3 nên p là số lẻ
=> 2 số p-1,p+1 là 2 số chẵn liên tiếp
=>(p-1)(p+1) chia hết cho 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên => p=3k+1 hoặc p=3k+2 (k thuộc N*)
+)Với p=3k+1 => (p-1)(p+1)=3k(3k+2) chia hết cho 3 (*)
+) Với p=3k+2 => (p-1)(p+1)=(3k-1).3.(k+1) chia hết cho 3 (**)
từ (*) và (**)=>(p-1)(p+1) chia hết cho 3 (2)
Vì (8;3)=1 =>từ (1) và (2) => (p-1)(p+1) chia hết cho 24

4 tháng 1 2018

Bài 1 :

 Gọi đó là p, q, r > 3 => p, q, r không chia hết cho 3. 
=> theo nguyên lý Dirichlet trong 3 số p, q, r phải có ít nhất 2 số chia cho 3 cho cùng số dư. 
Do 2d = 2(q - p) = 2(r - q) = r - p nên 2d chia hết cho 3 => d chia hết cho 3. 
d = q - p cũng chia hết cho 2 do p, q đều lẻ 
Vậy d chia hết cho 2*3 = 6