K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

\(\left(2x-1\right)\left(4x-16\right)>0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)>0\)  

\(\Leftrightarrow\orbr{\begin{cases}x>4\\x< \frac{1}{2}\end{cases}}\)

Vậy  x>4 hoac x<1/2 

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}2x-1>0\\x-4>0\end{cases}}\\\hept{\begin{cases}2x-1< o\\x-4< 0\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x>\frac{1}{2}\\x>4\end{cases}}\\\hept{\begin{cases}x< \frac{1}{2}\\x< 4\end{cases}}\end{cases}}}\)thank nhieu

19 tháng 1 2019

\(a)\left|x-9\right|\cdot(-8)=-16\)

\(\Rightarrow\left|x-9\right|=-16\div(-8)\)

\(\Rightarrow\left|x-9\right|=2\)

\(\Rightarrow x-9=\pm2\)

Lập bảng :

x - 92-2
x117

Vậy : \(x\in\left\{11;7\right\}\)

19 tháng 1 2019

\(b)\left|4-5x\right|=24\)

\(\Rightarrow4-5x=\pm24\)

Lập bảng :

4 - 5x24-24
x-4\(\frac{28}{5}\)

Mà \(x< 0\)nên x = -4

11 tháng 12 2021

\(a,\Leftrightarrow\dfrac{3x^3+6x^2-3x-5x^2-10x+5}{x^2+2x-1}=10\\ \Leftrightarrow\dfrac{3x\left(x^2+2x-1\right)-5\left(x^2+2x-1\right)}{x^2+2x-1}=10\\ \Leftrightarrow3x-5=10\Leftrightarrow3x=15\Leftrightarrow x=5\\ b,\Leftrightarrow\left(x^4+2x^2-4x^2-8\right):\left(x-2\right)=0\\ \Leftrightarrow\left[\left(x^2-4\right)\left(x^2+2\right)\right]:\left(x-2\right)=0\\ \Leftrightarrow\left[\left(x-2\right)\left(x+2\right)\left(x^2+2\right)\right]:\left(x-2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x^2+2\right)=0\Leftrightarrow x=-2\left(x^2+2>0\right)\\ c,\Leftrightarrow\dfrac{x\left(x-4\right)}{\left(x-4\right)^2}=0\Leftrightarrow\dfrac{x}{x-4}=0\Leftrightarrow x=0\)

11 tháng 12 2021

b: \(\Leftrightarrow x^4-4x^2+2x^2-8=0\)

hay x=-2

18 tháng 7 2019

a) (x - 1)3 - x(x - 2)- (x - 2) = 0

<=> x3 - 2x2 + x - x2 + 2x - 1 - x3 + 4x2 - 4x - x + 2 = 0

<=> x2 - 2x + 1 = 0

<=> x2 - 2.x.1 + 12 = 0

<=> (x - 1)2 = 0

        x - 1 = 0

        x = 0 + 1

        x = 1

=> x = 1

18 tháng 7 2019

a)Ta có : \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)

\(=>\left(x-1\right)^3-\left(x^2-2x\right)\left(x-2\right)-\left(x-2\right)=0\)

\(=>\left(x-1\right)^3-\left(x-2\right)\left(x^2-2x+1\right)=0\)

\(=>\left(x-1\right)^3-\left(x-2\right)\left(x-1\right)^2=0\)

\(=>\left(x-1\right)^2\left(x-1-x+2\right)=0\)

\(=>\left(x-1\right)^2=0=>x-1=0=>x=1\)

Vậy x=1

b)(2x+5)(2x-7)-(4x+3)2=16

\(=>4x^2-4x-35-16x^2-24x-9-16=0\)

\(=>-\left(12x^2+28x+60\right)=0\)

\(=>12\left(x^2+\frac{7}{3}x+\frac{5}{3}\right)=0\)

\(=>x^2+\frac{7}{3}x+\frac{49}{36}+\frac{11}{36}=0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}=0\)

Lại có \(\left(x+\frac{7}{6}\right)^2\ge0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}\ge\frac{11}{36}>0\)

Vậy ko có giá trị nào của x thỏa mãn đề bài

\(=>x^2+\frac{7}{3}x+\frac{49}{36}+\frac{11}{36}=0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}=0\)

a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0

=>-5x-4=0

=>x=-4/5

b: =>6x^2-9x+2x-3-6x^2-12x=16

=>-19x=19

=>x=-1

c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81

=>83x=83

=>x=1

23 tháng 6 2023

Cảm ơn nhìu ạ :3

28 tháng 5 2017

 ban nao giup minh vs mjnh vs

28 tháng 5 2017

1. a) 7x2 - 5x - 2 = 7x2 - 7x + 2x - 2 = 7x(x - 1) + 2(x - 1) = (x - 1).(7x + 2)

2. 5(2x - 1)2 - 3(2x - 1) = 0

<=> (2x - 1).[5(2x - 1) - 3] = 0

<=> (2x - 1).(10x - 8) = 0

<=> (2x - 1) = 0 hoặc (10x - 8) = 0

<=> x = 1/2 hoặc x = 4/5

3. x2 - 4x + 7 = (x2 - 4x + 4) + 3 = (x - 2)2 + 3

Do: (x - 2)2 > hoặc = 0 (với mọi x)

Nên (x - 2)2 + 3 > hoặc = 3 (với mọi x)

Hay (x - 2)2 + 3 > 0 (với mọi x)  => đpcm

25 tháng 8 2019

a) \(\left(x-3\right)^2-4=0\)

\(\left(x-3\right)^2=0+4\)

\(\left(x-3\right)^2=4\)

\(\left(x-3\right)^2=\pm4\)

\(\left(x-3\right)^2=\pm2^2\)

\(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)

\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

\(4x^2+12x+9-4x^2+1=22\)

\(12x+10=22\)

\(12x=22-10\)

\(12x=12\)

\(x=1\)

c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)

\(16x^2-9-16x^2+40x-25=16\)

\(-34+40x=16\)

\(40x=16+34\)

\(40x=50\)

\(x=\frac{50}{40}=\frac{5}{4}\)

d) \(x^3-9x^2+27x-27=-8\)

\(x^3-9x^2+27x-27+8=0\)

\(x^3-9x^2+27x-19=0\)

\(\left(x^2-8x+19\right)\left(x-1\right)=0\)

Vì \(\left(x^2-8x+19\right)>0\) nên:

\(x-1=0\)

\(x=1\)

e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)

\(x^3+2x^2+x+x^2+2x+1-x^2-3x^2=2\)

\(3x+1=2\)

\(3x=2-1\)

\(3x=1\)

\(x=\frac{1}{3}\)