Chứng tỏ: \(x^2+2x+9y^2+6y+15>0\forall x;y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 99 - 1 ) : 2 + 1 = 50 ( số )
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(A=x^2+2x+9y^2+6y+15\)
\(=\left(x+1\right)^2+\left(3y+1\right)^2+13\)
\(\left(x+1\right)^2\ge0\)
\(\left(3y+1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2+\left(3y+1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2+\left(3y+1\right)^2+13\ge13\)
\(\Rightarrow A\ge13\)
\(\Rightarrow A>0\)
\(a.A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4>0\text{∀}x\)
\(b.B=x^2-2x+9y^2-6y+3=x^2-2x+1+9y^2-6y+1+1=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\text{∀}x,y\)
1/
a, \(x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1\ge1>0\)
b,\(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)
2/
a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x-1=0 <=> x=1
Vậy Pmax = 4 khi x = 1
b, \(M=x^2+y^2-x+6y+10=\left(x^2-x+\dfrac{1}{4}\right)^2+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy Mmax = 3/4 khi x = 1/2, y = -3
Bài làm:
Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x,y,z\right)\)
x2 + 4y2 + z2 - 2x - 6z + 8y + 15
= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + ( 2y + 2 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x,y,z ( đpcm )
( 99 - 1 ) : 2 + 1 = 50 ( số )
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(A=x^2+x+1\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\left(x+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow A\ge\frac{3}{4}\)
\(\Rightarrow A>0\)
( 99 - 1 ) : 2 + 1 = 50 ( số )
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(A=x^2+6x+10=\left(x+3\right)^2+1\)
\(\left(x+3\right)^2\ge0\)
\(\Rightarrow\left(x+3\right)^2+1\ge1\)
\(\Rightarrow A\ge1\)
\(\Rightarrow A>0\)
Câu b:
Ta có: \(x^2 + 4y^2 + z^2 - 2x - 6z + 8y + 15\)
\(= (x^2 - 2x +1) + (4y^2 - 8y + 4) + (z^2 - 6z +9) +1\)
\(= (x-1)^2 + (2y-2)^2 + (z-3)^2 + 1\)
Mà \((x-1)^2 \geq 0; (2y-2)^2 \geq 0; (z-3)^2\geq 0\)
\(\implies\) \((x-1)^2+(2y-2)^2 +(z-3)^2\geq 0\)
\(\implies\)\((x-1)^2+(2y-2)^2 +(z-3)^2+1> 0\)
\(x^2+2x+9y^2+6y+15\)
\(=\left(x^2+2x+1\right)+\left(9y^2+6y+1\right)+13\)
\(=\left(x+1\right)^2+\left(3y+1\right)^2+13\ge13>0\)