Tìm GTNN của biểu thức :
B=\(\left(2x-1\right)^2+\left(x+2\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=\(4x^2-4x+1+x^2+4x+4=5x^2+5\)
\(=5\left(x^2+1\right)\)
vì\(x^2+1\ge1\forall x\)
\(\Leftrightarrow B\ge5\forall x\)
dấu'=' xảy ra \(\Leftrightarrow x^2+1=0\Leftrightarrow x=0\)
vậy B đạt GTNN =5 khi x=0
Bài 2:
a) Ta có: \(A=x^2-3x+5\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)
Ta có: \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{3}{2}=0\)
hay \(x=\dfrac{3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-3x+5\) là \(\dfrac{11}{4}\) khi \(x=\dfrac{3}{2}\)
\(A=\left|2021-x\right|+\dfrac{1}{2}\left|4040-2x\right|\)
\(A=\left|2021-x\right|+\left|2020-x\right|\)
\(A=\left|2021-x\right|+\left|x-2020\right|\ge\left|2021-x+x-2020\right|=1\)
\(A_{min}=1\) khi \(2020\le x\le2021\)
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)
=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)
Dấu "=" xảy ra khi x=-2;y=1/5
Vậy GTNN của C là -10 tại x=-2;y=1/5
b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)
Dấu "=" xảy ra khi: x=3/2
Vậy GTLN của D là : 4/5 tại x=3/2
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$2x^2+2=2(x^2+1)=(1^2+1^2)(x^2+1)\geq (x+1)^2$
$\Rightarrow Q=\frac{2x^2+2}{(x+1)^2}\geq \frac{(x+1)^2}{(x+1)^2}=1$
Vậy GTNN của $Q$ là $1$. Giá trị này đạt tại $\frac{1}{x}=\frac{1}{1}$ hay $x=1$
a)\(MaxA=\sqrt{3}\)<=>Dấu ''='' xảy ra
<=>x=2
b) Min A =2019<=>Dấu ''='' xảy ra
<=>2x-5=0
<=>x=5/2
\(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(B=4x^2-4x+1+x^2+4x+4\)
\(B=5x^2+5\)
Ta có: \(5x^2\ge0\forall x\)
\(\Rightarrow5x^2+5\ge5\forall x\)
\(B=5\Leftrightarrow5x^2=0\Leftrightarrow x=0\)
Vậy \(B_{min}=5\Leftrightarrow x=0\)
Tham khảo nhé~
B\(=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\ge5\)
Dấu "=" xảy ra khi x=0
Vậy ...