Cho 3 điểm A(0:-3) ; B(1;-1) và C(-1;-5)
CMR: A, B, C thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các điểm nằm trên trục hoành là các điểm có tung độ bằng 0. Trong số các điểm ở trên ta thấy những điểm có tung độ bằng 0 là: A(-1; 0), D(3; 0), O(0; 0) . Vậy có ba điểm nằm trên trục hoành
Chọn đáp án D
Thay tọa độ A vào (d) thỏa mãn \(\Rightarrow A\in d\Rightarrow d\left(A;d\right)=0\)
\(\Rightarrow d\left(K;d\right)=0\Rightarrow K\in d\)
\(\Rightarrow K\) là giao điểm của d và trục Ox
Tọa độ K là nghiệm: \(\left\{{}\begin{matrix}y=0\\2x-y-3=0\end{matrix}\right.\)
\(\Rightarrow K\left(\dfrac{3}{2};0\right)\)
Gọi d: y = ax + b là đường thẳng đi qua A và B
A ( 0 ; 3 ) ∈ ( d ) ⇔ a . 0 + b = 3 ⇔ b = 3 B ( 2 ; 2 ) ∈ ( d ) ⇔ a . 2 + b = 2 ⇒ b = 3 2 a + b = 2 ⇔ b = 3 a = − 1 2 ⇒ d : y = − 1 2 x + 3
Để 2 điểm A, B, C thẳng hàng thì C ( m + 3 ; m ) ∈ ( d ) y = − 1 2 x + 3
⇔ m = − 1 2 ( m + 3 ) + 3 ⇔ 3 2 m = 3 2 ⇒ m = 1
Vậy m = 1
Đáp án cần chọn là: A
Chứng minh rằng trực tâm H của tam giác ABC, trọng tâm G của tam giác A’B’C’ cùng nằm trên một đường thẳng đi qua O. Viết phương trình đường thẳng đó.
Tọa độ điểm \(G\) là \(G\left(\dfrac{6+0+0}{3},\dfrac{0+4+0}{3},\dfrac{0+0+3}{3}\right)\) suy ra \(G\left(2,\dfrac{4}{3},1\right)\).
\(\overrightarrow{AB}=\left(-2,3,0\right),\overrightarrow{BC}=\left(0,-3,4\right),\overrightarrow{CA}=\left(2,0,-4\right)\)
Đặt \(H\left(a,b,c\right)\).
Vì \(H\) là trực tâm tam giác \(ABC\) nên
\(\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{CA}=0\\\left[\overrightarrow{AB},\overrightarrow{AC}\right].\overrightarrow{AH}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3b+4c=0\\2a-4c=0\\12\left(a-2\right)+8b+6c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{72}{61}\\b=\dfrac{48}{61}\\c=\dfrac{36}{61}\end{matrix}\right.\) suy ra \(H\left(\dfrac{72}{61},\dfrac{48}{61},\dfrac{36}{61}\right)\).
\(\overrightarrow{OG}=\left(2,\dfrac{4}{3},1\right)\)
Đường thẳng qua OG: \(\left\{{}\begin{matrix}x=2t\\y=\dfrac{4}{3}t\\z=t\end{matrix}\right.\).
Bằng cách thử trực tiếp, ta thấy H nằm trên đường thẳng OG.
Ta có:
a) Điểm -5 nằm bên trái điểm -3, nên -5 nhỏ hơn -3, và viết: -5 < -3
b) Điểm 2 nằm bên phải điểm -3, nên 2 lớn hơn -3, và viết 2 > -3
c) Điểm -2 nằm bên trái điểm 0, nên -2 nhỏ hơn 0, và viết -2 < 0
Có thể tạo được 6 vecto theo yêu cầu đó là: \(\overrightarrow {AB} ,\overrightarrow {BA} ,\overrightarrow {AC} ,\overrightarrow {CA} ,\overrightarrow {BC,} \overrightarrow {CB} \)
ta có vecto AB(1;2),vectoAC(-1;-2)
suy ra vecto ab=-vecto ac
tương đương vecto ab,ac cung phương
3 điểm thẳng thàng