K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2016

bnag a,b,c luon

1 tháng 10 2018

KNLNLKLFNK;KLNKALSKNK

3 tháng 9 2018

a,  11n+2+122n+1

= 11n.121+12.122n

= 11n.(133-12)+12.122n

= 11n.133-11nn .12+12.122n

=12.(144n-11n)+11n. 133

Có 144nn-11n \(⋮\)144-11=133

11n.133\(⋮\)133

=> dpcm

11 tháng 8 2018

với \(n=0\) ta thấy nó thỏa mãn điều kiện bài toán

giả sử \(n=k\) thì ta có : \(5^{n+2}+26.5^n+8^{2n+1}=5^{k+2}+26.5^k+8^{2k+1}⋮59\)

khi đó nếu \(n=k+1\) thì ta có :

\(5^{n+2}+26.5^n+8^{2n+1}=5^{k+1+2}+26.5^{k+1}+8^{2k+2+1}\)

\(=5.5^{k+2}+5.26.5^k+8^2.8^{2k+1}=5.5^{k+2}+5.26.5^k+5.8^{2k+1}+59.8^{2k+1}\)

\(=5\left(5^{k+2}+26.5^k+8^{2k+1}\right)+59.8^{2k+1}⋮59\)

\(\Rightarrow\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
5 tháng 10 2017

Lời giải:

a)

\(A=11^{n+2}+12^{2n+1}\)

Ta thấy \(12^2\equiv 11\pmod {133}\Rightarrow 12^{2n+1}\equiv 11^n.12\pmod {133}\)

Do đó \(A=11^{n+2}+12^{2n+1}\equiv 11^{n+2}+11^n.12\pmod {133}\)

\(\Leftrightarrow A\equiv 11^n(11^2+12)\equiv 11^n.133\equiv 0\pmod {133}\)

Vậy \(A\vdots 133\) (đpcm)

b) Đề bài không rõ

c)

Ta thấy: \(5^{2}=25\equiv 6\pmod {19}\)

\(\Rightarrow 7.5^{2n}\equiv 7.6^n\pmod {19}\)

\(\Rightarrow 7.5^{2n}+12.6^n\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)

Vậy \(7.5^{2n}+12.6^n\vdots 19\) (đpcm)