K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2018

ta có a+1/a>=2√(a*1/a)=2 (bđt cô si)

dấu = xảy ra khi a=1

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Bài 1:

\(A=\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{a+b+a-b}{(a-b)(a+b)}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}=\frac{2a}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=(2a).\frac{a^2+b^2+a^2-b^2}{(a^2-b^2)(a^2+b^2)}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{4a^3}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=4a^3.\frac{a^4+b^4+a^4-b^4}{(a^4-b^4)(a^4+b^4)}+\frac{8a^7}{a^8+b^8}=\frac{8a^7}{a^8-b^8}+\frac{8a^7}{a^8+b^8}=8a^7.\frac{a^8+b^8+a^8-b^8}{(a^8-b^8)(a^8+b^8)}\)

\(=\frac{16a^{15}}{a^{16}-b^{16}}\)

--------------

\(B=\frac{1}{a(a+1)}+\frac{1}{(a+1)(a+2)}+\frac{1}{(a+2)(a+3)}=\frac{(a+1)-a}{a(a+1)}+\frac{(a+2)-(a+1)}{(a+1)(a+2)}+\frac{(a+3)-(a+2)}{(a+2)(a+3)}\)

\(=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+\frac{1}{a+2}-\frac{1}{a+3}\)

\(=\frac{1}{a}-\frac{1}{a+3}=\frac{3}{a(a+3)}\)

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Bài 2:

Bạn tham khảo lời giải tương tự tại link sau:

Câu hỏi của Law Trafargal - Toán lớp 8 | Học trực tuyến

26 tháng 1 2017

a) \(A=\left(1+\frac{b^2+c^2-a^2}{2bc}\right).\frac{1+\frac{a}{b+c}}{1-\frac{a}{b+c}}.\frac{b^2+c^2-\left(b-c\right)^2}{a+b+c}\)

\(=\frac{2bc+b^2+c^2-a^2}{2bc}.\frac{\frac{a+b+c}{b+c}}{\frac{b+c-a}{b+c}}.\frac{b^2+c^2-b^2+2bc-c^2}{a+b+c}\)

\(=\frac{\left(b+c+a\right)\left(b+c-a\right)}{2bc}.\frac{a+b+c}{b+c-a}.\frac{2bc}{a+b+c}\)

\(=a+b+c\)

b) \(B=\frac{\frac{3a}{a+b}}{\frac{2a}{a^2-2ab+b^2}}\)\(=\frac{3a}{a+b}.\frac{\left(a-b\right)^2}{2a}=\frac{3\left(a-b\right)^2}{2\left(a+b\right)}\)

c) \(C=\frac{\frac{a}{b}+\frac{b}{a}}{\frac{a}{b}-\frac{b}{a}}:\frac{\frac{a^2}{b^2}-\frac{b^2}{a^2}}{\left(\frac{1}{a}+\frac{1}{b}\right)^2}\)

\(=\frac{\frac{a^2+b^2}{ab}}{\frac{a^2-b^2}{ab}}:\frac{\frac{a^4-b^4}{a^2b^2}}{\frac{\left(a+b\right)^2}{a^2b^2}}\)

\(=\frac{a^2+b^2}{a^2-b^2}.\frac{\left(a+b\right)^2}{a^4-b^4}\)

\(=\frac{\left(a^2+b^2\right)\left(a+b\right)^2}{\left(a+b\right)\left(a-b\right)\left(a^2+b^2\right)\left(a+b\right)\left(a-b\right)}\)

\(=\frac{1}{\left(a-b\right)^2}\)

18 tháng 8 2023

a) \(a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}\cdot a^{\dfrac{7}{6}}=a^{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{7}{6}}=a^2\)

b) \(a^{\dfrac{2}{3}}\cdot a^{\dfrac{1}{4}}:a^{\dfrac{1}{6}}=a^{\dfrac{2}{3}+\dfrac{1}{4}-\dfrac{1}{6}}=a^{\dfrac{3}{4}}\)

c) \(\left(\dfrac{3}{2}a^{-\dfrac{3}{2}}\cdot b^{-\dfrac{1}{2}}\right)\left(-\dfrac{1}{3}a^{\dfrac{1}{2}}b^{\dfrac{2}{3}}\right)=\left(\dfrac{3}{2}\cdot-\dfrac{1}{3}\right)\left(a^{-\dfrac{3}{2}}\cdot a^{\dfrac{1}{2}}\right)\left(b^{-\dfrac{1}{2}}\cdot b^{\dfrac{2}{3}}\right)\)

\(=-\dfrac{1}{2}a^{-1}b^{-\dfrac{1}{3}}\)

20 tháng 7 2017

Tu lam di 

Sao hoi quai day

Phai biet suy nghi cho

7 tháng 8 2017

bạn tìm trong nâng cao phát triển toán 9 tập 1 ấy nó có ở đấy

cho đề này:

cho a;b;c là các số thực dương thỏa mãn a2+b2+c2=1.CMR:\(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le\frac{9}{2}\)

16 tháng 8 2019

Làm tạm một câu rồi đi chơi, lát làm cho.

4)

Áp dụng bất đẳng thức Cauchy-Schwarz :

\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

16 tháng 8 2019

2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)

Tương tự hai BĐT còn lại và cộng theo vế thu được:

\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)

Đẳng thức xảy ra khi a = b= c

10 tháng 5 2016

\(D=\left(\frac{a-b}{a^{\frac{3}{4}}+a^{\frac{1}{2}}.b^{\frac{1}{4}}}-\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a^{\frac{1}{4}}+b^{\frac{1}{4}}}\right):\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)^{-1}\sqrt{\frac{a}{b}}\)

   \(=\left[\frac{a-b}{a^{\frac{1}{2}}\left(a^{\frac{1}{4}}+b^{\frac{1}{4}}\right)}-\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a^{\frac{1}{4}}+b^{\frac{1}{4}}}\right]:\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)^{-1}\sqrt{\frac{b}{a}}\)

    \(=\frac{a-b-a+a^{\frac{1}{2}}.b^{\frac{1}{2}}}{a^{\frac{1}{2}}\left(a^{\frac{1}{4}}+b^{\frac{1}{4}}\right)}.\frac{1}{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}=\frac{b^{\frac{1}{2}}}{a^{\frac{1}{2}}}\frac{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}\sqrt{\frac{a}{b}}.\sqrt{\frac{a}{b}}=1\)

19 tháng 7 2018

a)\(\frac{1}{a+b-x}\)=\(\frac{1}{a}\)+\(\frac{1}{b}\)-\(\frac{1}{x}\)\(\Leftrightarrow\)\(\frac{1}{a+b-x}\)+\(\frac{1}{x}\)=\(\frac{a+b}{ab}\)\(\Leftrightarrow\)\(\frac{x+a+b-x}{x\left(a+b-x\right)}\)=\(\frac{a+b}{ab}\)

\(\Leftrightarrow\)\(\frac{a+b}{xa+xb-x^2}\)=\(\frac{a+b}{ab}\)\(\Leftrightarrow\)\(xa+xb-x^2\)=\(ab\)\(\Leftrightarrow\)\(xa+xb-x^2-ab\)=\(0\)

\(\Leftrightarrow\)\(a\left(x-b\right)-x\left(x-b\right)=0\)\(\Leftrightarrow\)\(\left(x-b\right)\left(a-x\right)=0\)\(\Leftrightarrow\)\(x=b;x=a\)

b) \(\Leftrightarrow\)\(\frac{1}{\left(x+a-1\right)\left(x+a+1\right)}+\frac{1}{\left(x+a+1\right)\left(x-a+1\right)}\)=\(\frac{1}{\left(x-a-1\right)\left(x+a+1\right)}+\frac{1}{\left(x-a+1\right)\left(x+a-1\right)}\)\(\Leftrightarrow\)\(\frac{1}{\left(x+a-1\right)\left(x+a+1\right)}-\frac{1}{\left(x-a-1\right)\left(x+a+1\right)}\)=\(\frac{1}{\left(x-a+1\right)\left(x+a-1\right)}-\frac{1}{\left(x+a+1\right)\left(x-a+1\right)}\)\(\Leftrightarrow\)\(\frac{1}{\left(x+a+1\right)}\left(\frac{1}{x+a-1}-\frac{1}{x-a-1}\right)\)=\(\frac{1}{x-a+1}\left(\frac{1}{x+a-1}-\frac{1}{x+a+1}\right)\)\(\Leftrightarrow\)\(\frac{1}{x+a+1}.\frac{-2a}{\left(x+a-1\right)\left(x-a-1\right)}=\frac{1}{x-a+1}.\frac{2}{\left(x+a-1\right)\left(x+a+1\right)}\)(Quy dong phan so ttrong dau ngoac)

\(\Leftrightarrow\)\(\frac{-2a}{x-a-1}=\frac{2}{x-a+1}\)\(\Leftrightarrow\)\(-2a\left(x-a+1\right)=2\left(x-a-1\right)\)\(\Leftrightarrow\)\(-ax+a^2-a=x-a-1\)\(\Leftrightarrow\)\(-ax-x+a^2-1=0\)\(\Leftrightarrow\)\(\left(a+1\right)\left(-x+a-1\right)=0\)

neu a+1=0 thi phuong trinh co vo so nghiem, neu a+1\(\ne\)0 thi x=a-1