Tìm số hạng thứ 50 của dãy : 3;24;63;120;195;...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là toán nâng cao chuyên đề dãy số có quy luật, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp xét dãy số phụ như sau:
Giải:
a; Cho dãy số: 1 x 3 ; 3 x 5; 5 x 7 ; 7 x 9; ...
Tìm số thứ 50 của dãy số trên
Xét dãy số: 1; 3; 5; 7;...;
Dãy số trên là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số thứ 50 của dãy số trên là: 2 x (50 - 1) + 1 = 99
Vậy thừa số thứ nhất của số hạng thứ 50 của tổng A là: 99
Thừa số thứ hai của số hạng thứ 50 của tổng A là: 99 + 2 = 101
Từ những lập luận trên ta có:
Số hạng thứ 50 của dãy số 1 x 3 ; 3 x 5; 5 x 7 ;... là: 99 x 101
b; tính tổng của B = 1 x 3 + 3 x 5 + 5 x 7 + ...+ 99 x 101
B = 1 x 3 + 3 x 5 + 5 x 7 + 7 x 9 + ...+ 99 x 101
6B = 1 x 3 x 6 + 3 x 5 x 6 + 5 x 7 x 6 + ...+ 99 x 101 x 6
6B = 1 x 3 x (5 + 1) + 3x5x(7 - 1) +5x7x(9-3)+...+99x101x(103-97)
6B = 1.3.5+1.3.1+3.5.7-1.3.5 + 5.7.9-3.5.7+...+99.101103 - 97.99.101
6B = 1.3.1 + 99.101.103
6B = 3 +9999.103
6B = 3 +1029897
6B = 1029900
B = 1029900 : 6
B = 171650
a: Quy luật là Un=1/n(n+1)
1/42; 1/56; 1/72
b: Số thứ 50 là 1/50*51=1/2550
Tổng là:
1/2+1/6+...+1/2550
=1-1/2+1/2-1/3+...+1/50-1/51
=1-1/51
=50/51
quy luật là
3=3x1
8=4x2
15=5x3
24=6x4
số thứ 50 là
7x5=35
8x6=48
9x7=63
vậy số thứ 50 là 63
Đây là toán nâng cao chuyên đề dãy số có quy luật, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp xét dãy số phụ như sau:
Giải:
a; Cho dãy số: 1 x 3 ; 3 x 5; 5 x 7 ; 7 x 9; ...
Tìm số thứ 50 của dãy số trên
Xét dãy số: 1; 3; 5; 7;...;
Dãy số trên là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số thứ 50 của dãy số trên là: 2 x (50 - 1) + 1 = 99
Vậy thừa số thứ nhất của số hạng thứ 50 của tổng A là: 99
Thừa số thứ hai của số hạng thứ 50 của tổng A là: 99 + 2 = 101
Từ những lập luận trên ta có:
Số hạng thứ 50 của dãy số 1 x 3 ; 3 x 5; 5 x 7 ;... là: 99 x 101
b; tính tổng của B = 1 x 3 + 3 x 5 + 5 x 7 + ...+ 99 x 101
B = 1 x 3 + 3 x 5 + 5 x 7 + 7 x 9 + ...+ 99 x 101
6B = 1 x 3 x 6 + 3 x 5 x 6 + 5 x 7 x 6 + ...+ 99 x 101 x 6
6B = 1 x 3 x (5 + 1) + 3x5x(7 - 1) +5x7x(9-3)+...+99x101x(103-97)
6B = 1.3.5+1.3.1+3.5.7-1.3.5 + 5.7.9-3.5.7+...+99.101103 - 97.99.101
6B = 1.3.1 + 99.101.103
6B = 3 +9999.103
6B = 3 +1029897
6B = 1029900
B = 1029900 : 6
B = 171650
Dãy số trên có quy luật là: số hạng thứ n = số hạng thứ (n-1) + (n-2) với n >= 3.
Ta có:
Số hạng thứ 1 = 3
Số hạng thứ 2 = 4
Sử dụng công thức trên, ta tính các số hạng tiếp theo:
Số hạng thứ 3 = 4 + 3 = 7
Số hạng thứ 4 = 7 + 4 = 11
Số hạng thứ 5 = 11 + 7 = 18
Số hạng thứ 6 = 18 + 11 = 29
Số hạng thứ 7 = 29 + 18 = 47
Số hạng thứ 8 = 47 + 29 = 76 ... Tiếp tục tính các số hạng tiếp theo, ta có:
Số hạng thứ 9 = 76 + 47 = 123
Số hạng thứ 10 = 123 + 76 = 199
Số hạng thứ 11 = 199 + 123 = 322 ...
Từ đây, ta thấy rằng các số hạng trong dãy này tăng dần và có sự gia tăng ngày càng nhanh. Điều này cho thấy dãy này không có quy luật đơn giản và không thể tính toán trực tiếp số hạng thứ 50.
Để tìm số hạng thứ 50, ta có thể sử dụng vòng lặp để tính từng số hạng từ số hạng thứ 3 đến số hạng thứ 50.
lớp 4 thiết á khó hơn cả lớp 5
nâng cao mà