tìm gia trị lớn nhất của
2018-5x^2-y^2-4xy+x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=-4x^2-4xy-y^2-x^2+x-1/4+5/4
=-(2x+y)^2-(x-1/2)^2+5/4<=5/4
Dấu = xảy ra khi x=1/2 và y=-2x=-1
a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5
GTNN A = 4,97
b) = (2x +y)2 + y2 + 2018
GTNN B = 2018 khi x=0;y=0
c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10
GTLN C = 169/16
d) = -(x-y)2 - (2x +1) +1 + 2016
GTLN D = 2017
(trg bn cho bài khó dữ z, làm hại cả não tui)
a: \(-2x^2-8x+1\)
\(=-2x^2-8x-8+9\)
\(=-2\left(x^2+4x+4\right)+9\)
\(=-2\left(x+2\right)^2+9< =9\forall x\)
Dấu '=' xảy ra khi x+2=0
=>x=-2
b: \(-5x^2-y^2-4xy+4x+3\)
\(=\left(-4x^2-4xy-y^2\right)+\left(-x^2+4x-4\right)+7\)
\(=-\left(2x+y\right)^2-\left(x-2\right)^2+7< =7\forall x,y\)
Dấu '=' xảy ra khi 2x+y=0 và x-2=0
=>x=2 và y=-2x=-4
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
Tổng quát có vp_two.Nhưng có lẽ bài 2 vp làm sai thì phải. gợi ý thôi.
a, phân tích đa thức thành tổng của bình phương. Vì các bình phương luôn lớn hơn hoặc bằng 0 nên GTNN = phần dư.
ở bài này GTNN=10
b,tương tự câu trên luôn, nhưng có vẻ bài này khó hơn nhiều đấy.
Mẹo nè: bạn đưa các phần tử có x về trước hết rùi đưa về bình phương của 3 số, thêm bớt đc phần còn lại nhét vào 1 bình phương nữa=>còn dư đấy chính là GTNN đó.
Bài này chắc là hơi khó đối với bạn nên minh làm sơ sơ cho bạn nghen
x^2-4xy+5y^2+10x-22y+28
x² - 4xy +10x +4y² + 25-20y +y²-2y +3
(x-2y+5)²+(y-1)²+2≥2
VẬy GTNN =2 <=>x=-3;y=1
Ta có \(2018-5x^2-y^2-4xy+x\)
\(=2018+\frac{1}{4}-\frac{1}{4}-4x^2-x^2-y^2-2.2xy+x\)
\(=2018+\frac{1}{4}-\left(2x\right)^2-2.2xy-y^2-x^2+2.\frac{1}{2}x-\frac{1}{4}\)
\(=\frac{8073}{4}-\left[\left(2x\right)^2+2.2xy+y^2\right]-\left[x^2-2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2\right]\)
\(=\frac{8073}{4}-\left(2x+y\right)^2-\left(x-\frac{1}{2}\right)^2\ge\frac{8073}{4}\)( Vì \(\left(2x+y\right)^2\ge0;\left(x-\frac{1}{2}\right)^2\ge0\))
Dấu ''='' xảy ra khi \(\hept{\begin{cases}2x+y=0\\x-\frac{1}{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-2x\\x=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}}\)
Vậy GTNN của \(2018-5x^2-y^2-4xy+x\)là \(\frac{8073}{4}\)khi \(x=\frac{1}{2}\)và\(y=-1\)