HELP ME PLS :( GIÚP tìm X (2x-15) mũ 5 = (20 -13) mu 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12 + 23 + 33 + 43
= 1 x1 + 2x2x2 + 3x3x3 + 4x4x4
= 1 + 8 + 27 + 64
= 100
\(105-\left[\left(2x+7\right)-13\right]=\left(-15\right)^{10}:\left(9^5.5^8\right)\\ 105-\left[\left(2x+7\right)-13\right]=25\\ \left(2x+7\right)-13=105-25\\ \left(2x+7\right)-13=80\\ 2x+7=80+13\\ 2x+7=93\\ 2x=93-7\\ 2x=86\\ x=\dfrac{86}{2}\\ x=43\)
\(105-\left[\left(2x+7\right)-13\right]=\left(-15\right)^{10}:\left(9^5.5^8\right)\\ 105-\left[\left(2x+7\right)-13\right]=15^{10}:3^{10}:5^8\\ 105-\left[\left(2x+7\right)-13\right]=5^{10}:5^8\\ 105-\left[\left(2x+7\right)-13\right]=25\\ \left(2x+7\right)-13=105-25\\ \left(2x+7\right)-13=80\\ 2x+7=80+13\\ 2x+7=93\\ 2x=93-7\\ 2x=86\\ x=86:2\\ x=43\)
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)
a. -13 - (5-x) = -10
-13 - 5 + x = -10
x = -10 + 13 + 5
x = 8
Vậy x = 8
b, -3x - 15 = 2x - 20
-3x - 2x = -20 + 15
-5x = -5
x = -5 : (-5)
x = 1
Vậy x = 1
c, 5 - (x-3)^2 = 20
(x-3)^2 = 5 - 20
(x-3)^2 = -15 ( vô lí )
Vậy không có giá trị x thỏa mãn
d. | x - 12 | - (-5) = 12
| x - 12 | = 12 + (-5)
| x - 12 | = 7
x - 12 = + - 7
(+) x - 12 = 7 (+) x - 12 = -7
x = 7 + 12 x = -7 + 12
X = 19 x = 5
Vậy x thuộc { 19 ; 5 }
a) \(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}-\dfrac{3}{4}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{72}\)
\(=\dfrac{5+9+1}{15}-\dfrac{27+8+1}{36}+\dfrac{1}{72}=1-1+\dfrac{1}{72}=\dfrac{1}{72}\)
b) \(=\dfrac{1}{5}-\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{5}{9}-\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{7}{13}-\dfrac{7}{13}-\dfrac{9}{16}\)
\(=\dfrac{9}{16}\)
a: \(\left[\left(10-x\right)\cdot2+51\right]:3-2=3\)
=>\(\left[2\left(10-x\right)+51\right]:3=5\)
=>\(\left[2\left(10-x\right)+51\right]=15\)
=>\(2\left(10-x\right)=15-51=-36\)
=>10-x=-36/2=-18
=>\(x=10-\left(-18\right)=10+18=28\)
b: \(\left(x-12\right)-15=20-\left(17+x\right)\)
=>\(x-12-15=20-17-x\)
=>\(x-27=3-x\)
=>\(2x=30\)
=>\(x=\dfrac{30}{2}=15\)
c: \(720-\left[41-\left(2x-5\right)\right]=2^3\cdot5\)
=>\(720-\left[41-2x+5\right]=8\cdot5=40\)
=>\(\left[41-2x+5\right]=720-40=680\)
=>-2x+46=680
=>-2x=680-46=634
=>\(x=\dfrac{634}{-2}=-317\)
bài 1
a) \(15+\left(32-2x\right)=65\)
\(32-2x=65-15\)
\(32-2x=50\)
\(2x=32-50\)
\(2x=-18\)
\(x=-18:2\)
\(x=-9\)
vậy \(x=-9\)
b)\(18.\left(x-5\right)^2=72\)
\(\left(x-5\right)^2=72:18\)
\(\left(x-5\right)^2=4=2^2\)
\(x-5=2\)
\(x=2+5=7\)
vậy \(x=7\)
c)\(\left|19-x\right|-6=0\)
\(\left|19-x\right|=0+6=6\)
\(19-x=\pm6\)
\(\left[{}\begin{matrix}19-x=6\\19-x=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=13\\x=25\end{matrix}\right.\)
vậy \(x\in\left\{13;25\right\}\)
`@` `\text {Ans}`
`\downarrow`
Ta có:
`A(x) = B(x)* Q(x) - x + 1`
`A(x) = x^3-2x^2+x`; `Q(x) = x - 1`
`<=> B(x) * (x - 1) - x + 1 = x^3 - 2x^2 + x`
`<=> B(x) * (x - 1) = x^3 - 2x^2 + x + x - 1`
`<=> B(x) * (x - 1) = x^3 - 2x^2 + 2x - 1`
`<=> B(x) = (x^3 - 2x^2 + 2x - 1) \div (x - 1)`
`<=> B(x) = x^2 - x + 1`
Vậy, `B(x) = x^2 - x + 1.`
A(x)=B(x)*Q(x)-x+1
=>x^3-2x^2+x=B(x)(x-1)-x+1
=>B(x)*(x-1)=x^3-2x^2+x+x-1=x^3-2x^2+2x-1
=>\(B\left(x\right)=\dfrac{x^3-2x^2+2x-1}{x-1}=\dfrac{\left(x-1\right)\left(x^2+x+1\right)-2x\left(x-1\right)}{x-1}\)
=>B(x)=x^2+x+1-2x
=>B(x)=x^2-x+1