Tìm các chữ số a,b,c biết rằng \(\sqrt{\overline{abc}}\)=(a+ b).\(\sqrt{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bất đẳng thức côsi
a+b >= 2\(\sqrt{ab}\)
<=> (a+b).\(\sqrt{c}\)>=2.\(\sqrt{abc}\)
Mà \(\sqrt{abc}\)= (a+b) .\(\sqrt{c}\) nên a=b , \(\sqrt{c}\)= 2.\(\sqrt{c}\)
<=> c = 0 và với mọi a,b
\(\Leftrightarrow\frac{1}{a+b+c}=\overline{0,abc}\)
\(\Leftrightarrow\frac{1000}{a+b+c}=\overline{abc}\)
\(\Leftrightarrow\overline{abc}.\left(a+b+c\right)=1000\)
vì abc là số có 3 chữ số nên
\(\Leftrightarrow\overline{abc}.\left(a+b+c\right)=500.2=250.4=200.5=125.8=100.10\)
TH1: abc=500;a+b+c=2 <=>a=5;b=0;c=0;a+b+c=2(loại);
TH2: abc=250;a+b+c=4 <=>a=2;b=5;c=0;a+b+c=4(loại);
TH3: abc=200;a+b+c=5 <=>a=2;b=0;c=0;a+b+c=5(loại);
TH4: abc=125;a+b+c=8 <=>a=1;b=2;c=5;a+b+c=8(chọn);
TH5: abc=100;a+b+c=10 <=>a=1;b=0;c=0;a+b+c=10(loại);
vậy:\(a=1;b=2;c=5\)