\(sin5x+sinx+2sin^2x=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/
\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos6x=1-cos4x\)
\(\Leftrightarrow cos6x+cos2x-2cos4x=0\)
\(\Leftrightarrow2cos4x.cos2x-2cos4x=0\)
\(\Leftrightarrow2cos4x\left(cos2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)
a/
\(\Leftrightarrow1+cos2x+cos3x+cosx=0\)
\(\Leftrightarrow2cos^2x+2cos2x.cosx=0\)
\(\Leftrightarrow2cosx\left(cosx+cos2x\right)=0\)
\(\Leftrightarrow2cosx\left(2cos^2x+cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=-1\\cosx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)
b/
\(\Leftrightarrow2sin3x.cosx+sin3x=2cos3x.cosx+cos3x\)
\(\Leftrightarrow sin3x\left(2cosx+1\right)-cos3x\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left(sin3x-cos3x\right)\left(2cosx+1\right)=0\)
\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(3x-\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)
sin3x + 1=2sin22x
<=> sin3x + 1 = 2\(\dfrac{1-cos4x}{2}\)
<=> sin3x + 1 = 1 - cos4x
<=> sin3x = -cos4x
<=> sin3x + cos4x = 0
<=> \(\dfrac{\sqrt{2}}{2}\)sin3x + \(\dfrac{\sqrt{2}}{2}\)cos4x = 0 (chia 2 vế cho \(\sqrt{2}\)).
<=> cos\(\dfrac{\pi}{4}\)sin3x + sin\(\dfrac{\pi}{4}\)cos4x = 0
<=> sin (3x+\(\dfrac{\pi}{4}\)) = 0
<=> sin(3x+\(\dfrac{\pi}{4}\)) = sin0
<=> \(\left[{}\begin{matrix}3x+\dfrac{\pi}{4}=0+k2\pi\\3x+\dfrac{\pi}{4}=\pi-0+k2\pi\end{matrix}\right.\)(k\(\in\)Z)
<=>\(\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+\dfrac{k2\pi}{3}\\x=\dfrac{5\pi}{12}+\dfrac{k2\pi}{3}\end{matrix}\right.\)(k\(\in\)Z)
a) pt <=> - cos2x. tan22x + 3.cos2x=0
<=> \(\dfrac{sin^22x}{-cos2x}\)+ 3cos2x =0
<=> sin22x - 3cos22x = 0
<=> 1 - 4 cos22x = 0
<=> 1 - 4.\(\dfrac{1+cos4x}{2}\)= 0
<=> cos4x = \(\dfrac{-1}{2}\)
\(\Leftrightarrow sin5x+sinx-\left(1-2sin^2x\right)=0\)
\(\Leftrightarrow2sin3x.cos2x-cos2x=0\)
\(\Leftrightarrow cos2x\left(2sin3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin3x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k\pi\\3x=\dfrac{\pi}{6}+k2\pi\\3x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{18}+\dfrac{k2\pi}{3}\\x=\dfrac{5\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
\(sin5x+sinx+2sin^2x=1\)
\(\Leftrightarrow\left(sin5x+sinx\right)-\left(1-2sin^2x\right)=0\)
\(\Leftrightarrow2sin3x.cos2x-cos2x=0\)
\(\Leftrightarrow cos2x\left(2sin3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin3x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k\pi\\\left[{}\begin{matrix}3x=\dfrac{\pi}{6}+k2\pi\\3x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\end{matrix}\right.\)
Vậy...