Từ các điểm phân biệt A, B, C. Có bao nhiêu vectơ khác 0 được tạo ra? Hãy liệt kê các vectơ đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các vectơ khác vectơ – không được lập ra từ 4 điểm đã cho là:
A B → ; A C → ; A D → ; B A → ; B C → ; B D → ; C A → ; C B → ; C D → ; D A → ; D B → ; D C →
Đáp án C
Lời giải:
$\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}, \overrightarrow{AE}$
$\overrightarrow{BA}, \overrightarrow{BC}, \overrightarrow{BD}, \overrightarrow{BE}$
$\overrightarrow{CA}, \overrightarrow{CB}, \overrightarrow{CD}, \overrightarrow{CE}$
$\overrightarrow{DA}, \overrightarrow{DB}, \overrightarrow{DC}, \overrightarrow{DE}$
$\overrightarrow{EA}, \overrightarrow{EB}, \overrightarrow{EC}, \overrightarrow{ED}$
Có thể tạo được 6 vecto theo yêu cầu đó là: \(\overrightarrow {AB} ,\overrightarrow {BA} ,\overrightarrow {AC} ,\overrightarrow {CA} ,\overrightarrow {BC,} \overrightarrow {CB} \)
Xét tập X = {A, B, C, D, E ; F}. Với mỗi cách chọn hai phần tử của tập X và sắp xếp theo một thứ tự ta được một vectơ thỏa mãn yêu cầu
Mỗi vectơ thỏa mãn yêu cầu tương ứng cho ta một chỉnh hợp chập 2 của 6 phần tử thuộc tập X.
Vậy số các vectơ thỏa mãn yêu cầu bằng số tất cả các chỉnh hợp chập 2 của 6, bằng
Chọn C.
Đáp án B.
Từ 2 điểm phân biệt có thể tạo được 2 vecto nên số vecto tạo ra được là